Building automated and foundational verification tools with **Lithium**

Swiss Verification Day, 10.1.24

Michael Sammler

Let's build a verification tool!

Building a verification tool from scratch is a lot of work!

How can we get a reusable foundation for building verification tools?

Common approach

Translate to an intermediate verification language (IVL)

Boogie

natural mapping from

source lang. to IVL

What if there is **no** IVL that fits the source language?

Common approach Translate to an intermediate verification language (IVL)

Source language

detailed model of C (e.g., taking addresses of local variables, int-ptr-casts, ...)

Proof search based on type assignments

automated separation logic reasoning

Source language

assembly language with flat memory model

Proof search based on points-to assertions

Challenge: Very different languages, memory models, and proof search procedures

Common approach

Translate to an intermediate verification language (IVL)

Key ideaCreate a DSL for expressing the **verification algorithm**

Common approach Translate to an intermediate verification language

Key idea Create a DSL for expressing the verification algorithm

Lithium

Atoms describe the assertions manipulated during verification (e.g. points-to predicate or type assignments)

Islar's
$$a \mapsto_M b$$

$$v \triangleleft_{\mathsf{v}} \&_{\mathsf{own}}(\tau)$$

Functions encode the proof search procedure

Atom
$$A := \dots$$

Function
$$F := A_1 <: A_2 \mid \dots$$

Provided by the user

Goal $G ::= \text{exhale } H; G \mid \text{inhale } H; G \mid \forall x. G \mid \exists x. G \mid$ $\text{done } \mid x \leftarrow F; G \mid \text{return}_G \mid x \mid \dots$

Lithium primitives

proving and assuming assertions

(Lithium)

universal and existential quantifiers

Adaptable to the source language

Lithium

Shallowly embedded in the Coq proof assistant and based on Iris ⇒ Foundational

Comes with an interpreter ⇒ Automated

Let's build a verification tool with Lithium!

Thank you for your attention!

Interested in learning more?

Let's chat!

see also Part I of my thesis (available at https://people.mpi-sws.org/~msammler/)

Lithium and the tutorial are distributed with RefinedC:

https://gitlab.mpi-sws.org/iris/refinedc/