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How much does your life 
and security depend on 

computers?



Problem: Security of high-assurance  
systems

Successful attacks on high-assurance systems might lead to 
catastrophe, social disturbances, political instability.
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Problem: How to formally verify security 
properties of confidential computing systems?

Security-critical systems are subject to regulations and require formal 
verification.

Policy makers Industry Academia
regulations
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High-
assurance 

system
confidential computing

examples: 
IBM Secure Execution,  
OpenPower PEF,  
Intel TDX, AMD SEV,  
Intel SGX, Keystone

…
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Goal: Build an open-source 
formally verified security 
monitor for confidential 

computing.
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https://github.com/
IBM/ACE-RISCV
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What has to be proven?

security 
guarantees

functional correctness 

language memory safety guarantees

execution safety

e.g., buffer overflows

e.g., page tables correctly configured

e.g., no undefined system states

invariants

e.g., confidentiality of VM data
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oo

f d
ep

en
de

nc
ies

hardware properties and correctness e.g., leaked information via micro-architectural state

e.g., two VMs cannot access the same page
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Rust provides memory safety guarantees

10Read more: https://tiemoko.com/blog/blue-team-rust/

Safe Rust 
• Memory safety,

• Type system providing 

ownership, borrowing, 
lifetimes. 

Unsafe Rust 
• Enables C-style pointer 

accesses

• Gives no memory safety 

guarantees.
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Verification using RefinedRust
Goal: verify memory safety & functional correctness & panic-freedom

Radium operational 
semantics for Rust

Refinement type system 
with semantic model 
inspired by RustBelt

Proof automation using 
the Lithium separation 

logic engine

Automatic translation 
from Rust (MIR) into 

Radium

Coq proof assistant

Presented at RW’23
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Architecture of RefinedRust
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Goal: To prove that two different confidential VMs cannot access 
the same physical memory region in the confidential memory.

Example: Memory Allocation
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Example: Memory Allocation
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Goal: To prove that two different confidential VMs cannot access 
the same physical memory region in the confidential memory.
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Goal: To prove that two different confidential VMs cannot access 
the same physical memory region in the confidential memory.
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Goal: To prove that two different confidential VMs cannot access 
the same physical memory region in the confidential memory.



Example: Memory Allocation
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main memory (RAM)

page containing data

root page table

intermediate page table

We must formally verify the 
functional correctness of the 
page table configuration.


Let’s leverage Rust’s type 
system with its ownership and 
memory safety guarantees!

points 
to

points 
to

Goal: To prove that two different confidential VMs cannot access 
the same physical memory region in the confidential memory.



Example: Memory Allocation
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the same physical memory region in the confidential memory.
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confidential VM creation at runtime hardware

Example: Memory Allocation
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confidential VM creation at runtime
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Demo: Verifying page tokens 
with RefinedRust
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Impressions on using Rust
• System engineering:


• Sufficient ecosystem for writing embedded systems, 


• Need to be careful to not falling into C style programming with Rust when 
writing low-level code (hint: treat “unsafe” as a red flag and build safe 
abstraction over hardware).


• Formal verification


• Ecosystem less mature than for C,


• Rust limits the developer but it forces to write code in a way that is easier to 
prove. C gives more flexibility to the developer but the code is then more 
difficult to prove.



Project status and future plans
• Implementation status: 


• Prototype running confidential VMs with VirtIO support


• Goal for the next months:


• Add support for Linux-based VMs


• Verify the core of ACE’s paging system


• Gradually adding more features to RefinedRust (including lots of usability 
improvements); long-term: add another backend for speed



Open Questions
1. How to verify parts implemented in assembly and link with Rust verification?


2. How can we prove security properties on top of the functional verification?


• Feasible thanks to Coq’s expressive logic! 


3. How can we make unsafe Rust verification more scalable?


• RefinedRust’s usability is nowhere near more mature provers for safe Rust 
(like Prusti, Creusot, etc.)

Thank you 
Lennard Gäher & Wojciech Ozga


