
Towards The Formal Verification of Security
Monitor For Confidential Computing

`Goal, Methodology, Demo, Challenges`

January 10, 2024

SVD’24 workshops, Neuchâtel

Lennard Gäher Wojciech Ozga
IBM Research - Zürich IBM Research - Zürich
MPI-SWS, Germany

lennard.gaeher@ibm.com woz@zurich.ibm.com

mailto:Lennard.Gaeher@ibm.com
mailto:woz@zurich.ibm.com

How much does your life
and security depend on

computers?

Problem: Security of high-assurance
systems

Successful attacks on high-assurance systems might lead to
catastrophe, social disturbances, political instability.

Space

Governmental
systemsPower

plants

 
Critical  

infrastructure

Finance /
Health

 Rail

 
Aircraft

3

 Cloud

4

Problem: How to formally verify security
properties of confidential computing systems?

Security-critical systems are subject to regulations and require formal
verification.

Policy makers Industry Academia
regulations

5

High-
assurance

system
confidential computing

examples: 
IBM Secure Execution,  
OpenPower PEF,  
Intel TDX, AMD SEV,  
Intel SGX, Keystone

…

Towards a Formally Verified Security Monitor
for VM-based Confidential Computing

`Architecture, Methodology, Model, Example`

Zürich, August 2023

Wojciech Ozga Guerney D.H. Huntu Michael V. Le
IBM Research - Zürich IBM T.J. Watson Research Center IBM T.J. Watson Research Center
woz@zurich.ibm.com gdhh@us.ibm.com mvle@us.ibm.com

(presenter)
Elaine R. Palmer Avraham Shinnar

IBM T.J. Watson Research Center IBM T.J. Watson Research Center
erpalmer@us.ibm.com shinnar@us.ibm.com

Goal: Build an open-source
formally verified security
monitor for confidential

computing.

mailto:woz@zurich.ibm.com
mailto:gdhh@us.ibm.com
mailto:mvle@us.ibm.com
mailto:erpalmer@us.ibm.com
mailto:shinnar@us.ibm.com

https://github.com/
IBM/ACE-RISCV

8

What has to be proven?

security 
guarantees

functional correctness

language memory safety guarantees

execution safety

e.g., buffer overflows

e.g., page tables correctly configured

e.g., no undefined system states

invariants

e.g., confidentiality of VM data

pr
oo

f d
ep

en
de

nc
ies

hardware properties and correctness e.g., leaked information via micro-architectural state

e.g., two VMs cannot access the same page

9

What has to be proven?

security 
guarantees

functional correctness

language memory safety guarantees

execution safety

e.g., buffer overflows

e.g., page tables correctly configured

e.g., no undefined system states

invariants

e.g., confidentiality of VM data

pr
oo

f d
ep

en
de

nc
ies

hardware properties and correctness e.g., leaked information via micro-architectural state

e.g., two VMs cannot access the same page

focus of this talk

Rust provides memory safety guarantees

10Read more: https://tiemoko.com/blog/blue-team-rust/

Safe Rust
• Memory safety,

• Type system providing

ownership, borrowing,
lifetimes.

Unsafe Rust
• Enables C-style pointer

accesses

• Gives no memory safety

guarantees.

11

Verification using RefinedRust
Goal: verify memory safety & functional correctness & panic-freedom

Radium operational
semantics for Rust

Refinement type system
with semantic model
inspired by RustBelt

Proof automation using
the Lithium separation

logic engine

Automatic translation
from Rust (MIR) into

Radium

Coq proof assistant

Presented at RW’23

12

Architecture of RefinedRust

Rust
compiler Polonius

Rust

code borrow

facts

MIR

MIR

Rust code

User-annotated
specifications

Code & Spec

1 4

Proof automation (Coq)

Radium operational
semantics in Coq

Specification in
RefinedRust’s type system +

annotations

Radium code in Coq

3

Formal code representation (Coq)Frontend (compilation)

2

RefinedRust
frontend

ge
ne

ra
te

s

Lithium

 Proof (Coq)

(extended)
lifetime logic

Iris

RefinedRust type system
+ automation

Manual tactics and hints

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

Example: Memory Allocation

main memory (RAM)

page containing data

confidential
virtual machine 2

confidential
virtual machine 1

x

cannot
access 
memory

can

access 
memory

Example: Memory Allocation

14

memory
management

unit

read  
address

read value or page fault 

read  
address

hardwaremain memory (RAM)

processor’s
core

executing
application’s
instructions

page containing data

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

Example: Memory Allocation

15

read  
address

read value or page fault 

main memory (RAM)

page containing data

hardware

memory
management

unit

read  
address

processor’s
core

executing
application’s
instructions

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

read  
address

processor’s
core

executing
application’s
instructions

Example: Memory Allocation

16

read  
address

read value or page fault 

main memory (RAM)

page containing data

hardware

memory
management

unit

reads  
configurationroot page table

intermediate page table

points 
to

points 
to

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

root page table

intermediate page table memory
management

unit

read  
address

Example: Memory Allocation

17

main memory (RAM)

page containing data read value or page fault 

processor’s
core

executing
application’s
instructions

hardware

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

Example: Memory Allocation

18

main memory (RAM)

page containing data

root page table

intermediate page table

We must formally verify the
functional correctness of the
page table configuration.

Let’s leverage Rust’s type
system with its ownership and
memory safety guarantees!

points 
to

points 
to

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

Example: Memory Allocation

19

memory
management

unit

initialization procedure executed at boot time

processor’s
core

read value or page fault 

read  
address

main memory (RAM)

MemoryTracker
Rust construct

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

hardware

Example: Memory Allocation

20

memory
management

unit

initialization procedure executed at boot time

processor’s
core

read value or page fault 

read  
address

main memory (RAM)

MemoryTracker
Rust construct

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

hardware

Example: Memory Allocation

21

memory
management

unit

confidential VM creation at runtime

processor’s
core

read value or page fault 

read  
address

main memory (RAM)

root
PageTable
Rust construct

MemoryTracker
Rust construct

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

hardware

Example: Memory Allocation

22

memory
management

unit

confidential VM creation at runtime

processor’s
core

read value or page fault 

read  
address

main memory (RAM)

root
PageTable
Rust construct

Page
(token)

MemoryTracker
Rust construct

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

confidential VM creation at runtime hardware

Example: Memory Allocation

23

memory
management

unit

confidential VM creation at runtime

processor’s
core

read value or page fault 

read  
address

main memory (RAM)

root
PageTable
Rust construct

can read/write  
configuration

MemoryTracker
Rust construct

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

hardware

Example: Memory Allocation

24

memory
management

unit

confidential VM creation at runtime

processor’s
core

read value or page fault 

read  
address

main memory (RAM)

root
PageTable
Rust construct

PageTable
Rust construct

Entry constructor

MemoryTracker
Rust construct

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

hardware

Example: Memory Allocation

25

memory
management

unit

confidential VM creation at runtime

processor’s
core

read value or page fault 

read  
address

main memory (RAM)

root
PageTable
Rust construct

PageTable
Rust construct

Entry constructor

Leaf
PageTableEntry

Rust construct
MemoryTracker

Rust construct

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

confidential VM creation at runtime

PageTable
Rust construct

(root)
PageTable
Rust construct

Entry constructor

MemoryTracker
Rust construct

hardware

Example: Memory Allocation

26

memory
management

unit

processor’s
core

read value or page fault 

read  
address

main memory (RAM)

data page

intermediate page table

points 
to

Leaf
PageTableEntry

Rust construct

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

Leaf
PageTableEntry

Rust construct

PageTable
Rust construct

MemoryTracker
Rust construct

hardware

Example: Memory Allocation

27

memory
management

unit

processor’s
core

read value or page fault 

read  
address

main memory (RAM)

data page

intermediate page table

points 
to

write configuration(root)
PageTable
Rust construct

Entry constructor

confidential VM creation at runtime

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

Demo: Verifying page tokens
with RefinedRust

28

Impressions on using Rust
• System engineering:

• Sufficient ecosystem for writing embedded systems,

• Need to be careful to not falling into C style programming with Rust when
writing low-level code (hint: treat “unsafe” as a red flag and build safe
abstraction over hardware).

• Formal verification

• Ecosystem less mature than for C,

• Rust limits the developer but it forces to write code in a way that is easier to
prove. C gives more flexibility to the developer but the code is then more
difficult to prove.

Project status and future plans
• Implementation status:

• Prototype running confidential VMs with VirtIO support

• Goal for the next months:

• Add support for Linux-based VMs

• Verify the core of ACE’s paging system

• Gradually adding more features to RefinedRust (including lots of usability
improvements); long-term: add another backend for speed

Open Questions
1. How to verify parts implemented in assembly and link with Rust verification?

2. How can we prove security properties on top of the functional verification?

• Feasible thanks to Coq’s expressive logic!

3. How can we make unsafe Rust verification more scalable?

• RefinedRust’s usability is nowhere near more mature provers for safe Rust
(like Prusti, Creusot, etc.)

Thank you
Lennard Gäher & Wojciech Ozga

