January 10, 2024
SVD’24 workshops, Neuchatel

<|||i

Towards The Formal Verification of Security
Monitor For Confidential Computing

‘Goal, Methodology, Demo, Challenges

Lennard Gaher Woijciech Ozga

IBM Research - Zurich IBM Research - Zurich
MPI-SWS, Germany

lennard.gaeher@ibm.com woz@zurich.ibm.com

mailto:Lennard.Gaeher@ibm.com
mailto:woz@zurich.ibm.com

How much does your life
and security depend on
computers?

Problem: Security of high-assurance

systems

Finance /
Health Governmental
Systems

Critical
Infrastructure

Successful attacks on high-assurance systems might lead to
catastrophe, social disturbances, political instability.

& SIGN IN 111eMegister® Q

{* SECURITY 7}

No big deal... Kremlin hackers 'jJumped air-gapped
networks' to pwn US power utilities

|l
Jo

HOME > TECH

INbIUtR ™ Login

The hackers that attacked a major US oil pipeline say it was
only for money — here's what to know about DarkSide

k J Natasha Dailey May 10, 2021, 5:49 PM

'Hundreds' of intrusions, switch could be pulled anytin —

Richard Chirgwin

N governmentrackrs tponcuaing ameri. A WOTst Nightmare' Cyberattack:
rl] Uncle Sam's finest reckon Moscow's agent The U ntOId Story Of The SOIarWl ﬂdS

networks within US electric utilities — to the H ac k
have virtually pressed the off switch in cont
Yanks, and plunged America into darkness| Anri| 16, 2021 - 10:05 AM ET

Heard on All Things Considered

The hackers, dubbed Dragonfly and Energ
2016, and continued throughout 2017 arﬂ

€he New Hork Eimes

Hackers Are Targeting Nuclear Faci
Homeland Security Dept. and F.B.1.

| Zoé van Dijk for NPR

S.’T'. ‘:—\
e ™

ﬁ|—

|

The Wolf Creek Nuclear power plant in Kansas in 2000. The corporation that runs the
plant was targeted by hackers. David Eulitt/Capital Journal, via Associated Press

By Nicole Periroth
July 6, 2017

An NPR investigation into the SolarWinds attack reveals a hack unlike any other, launched by a

8 sophisticated adversary intent on exploiting the soft underbelly of our digital lives.

l:

—

% REUTERS Q

INTERNET NEWS
JULY 10, 2017 / 1:57 PM / UPDATED 5 YEARS AGO

Foreign hackers probe European critical
infrastructure networks: sources

By Mark Hosenball

LONDON (Reuters) - Cyber attackers are regularly trying to attack data
networks connected to critical national infrastructure systems around
Europe, according to current and former European government sources

with knowledge of the issue.

a do Ministério
expoe dados

" | pessoais de mais de 200

milhoes de brasileiros

Erro em sistema federal de registro de casos de covid permitiu
acesso, durante seis meses, a informacoes pessoais de todos os
brasileiros cadastrados no SUS e clientes de plano de satde

Fabiana Cambricoli, O Estado de S.Paulo
02 de dezembro de 2020 | 05h00

© f

1

AN

’ .
. g
,

l

and computers are seen inside a data centre at an office in the heart of the financial
in London, Britain May 15, 2017. REUTERS/Dylan Martinez

P

Problem: How to formally verify security
properties of confidential computing systems?

assurance
system

R

Security-critical systems are subject to regulations and require formal
verification.

confidential computing

examples:

IBM Secure Execution,
OpenPower PEF,

Intel TDX, AMD SEV,
Intel SGX, Keystone

Goal: Build an open-source
formally verified security

monitor for confidential
computing.

mailto:woz@zurich.ibm.com
mailto:gdhh@us.ibm.com
mailto:mvle@us.ibm.com
mailto:erpalmer@us.ibm.com
mailto:shinnar@us.ibm.com

°
= O IBM / ACE-RISCV Q Type (/] to search > +~ GO 1N B8 ‘

<{> Code

() Issues 19 Pullrequests () Actions [Projects [J Wiki) Security |~ Insights 3 Settings

=M ACE-RISCV Public 57 EditPins ~ ® Unwatch 4 ~ % Fork 10 v Starred 13 v

¥ main ~ ¥ 1Branch 0 Tags Q Go tofile t Add file ~ <> Code ~ About

[IJ README 3[3 Apache-2.0 license V4

Assured Confidential Execution (ACE) for RISC-V

ACE-RISCV is an open-source project, whose goal is to deliver a confidential computing framework e —
with a formally proven security monitor. It is based on a canonical architecture and targets RISC-V V

with the goal of being portable to other architectures. The formal verification efforts focus on the * Q bt
security monitor implementation. We invite collaborators to work with us to push the boundaries of = E
provable confidential computing technology.

| I O |
| NN N -

This is an active research project, without warranties of any kind. Please read our paper to learn about our
approach and goals.

We are currently building on RISC-V with hypervisor extentions. We will adapt the AP-TEE extension once it is
ratified.

Quick Start

Follow instructions to run a sample confidential workload under an untrusted Linux-based hypervisor in an emulated
RISC-V environment.

https://github.com/
IBM/ACE-RISCV

What has to be proven?

security

guarantees e.g., confidentiality of VM data

iInvariants e.d., two VMs cannot access the same page

execution safety e.d., ho undefined system states

functional correctness e.g., page tables correctly configured
language memory safety guarantees e.g., buffer overflows

hardware properties and correctness e.d., leaked information via micro-architectural state

What has to be proven?

security

guarantees e.g., confidentiality of VM data

invariants e.d., two VMs cannot access the same page
execution safety e.d., ho undefined system states

functional correctness e.g., page tables correctly configured

language memory safety guarantees e.g., buffer overflows focus of this talk

hardware properties and correctness e.g., leaked information via micro-architectural state

Rust provides memory safety guarantees

N\

Safe Rust Unsafe Rust

 Memory safety, * Enables C-style pointer

e Jype system providing ACCESSEes

ownership, borrowing, * Gives no memory safety
lifetimes. guarantees.

10

Verification using RefinedRust

Goal: verify memory safety & functional correctness & panic-freedom

~

Automatic translation
from Rust (MIR) into
Radium

\

N

Radium operational
semantics for Rust

AN

a4 N

Proof automation using
the Lithium separation
logic engine

Coq proof assistant s

& J
4)

Refinement type system
with semantic model
iInspired by RustBelt

N\ J

Cat

Y.

11

Architecture of RefinedRust

Code & Spec

D T

Rust code

.

r

User-annotated
specifications

_ w,

Frontend (compilation)

Formal code representation (Coq)

Specification in

annotations

RefinedRust’s type system +

generates

{
1

Radium code in Coq

RefinedRust
frontend
I
Rust / boﬁow
code MIR facts
v |
[[)
Rust .
compiler MIR —» Polonius
_ _ Y,

T

e

Radium operational
semantics in Coq

~

Proof automation (Coq)

Manual tactics and hints

(")

- w,

}

)
Proof (Coq) @
S
é T)
RefinedRust type system
+ automation
. .

-
g Lithium J[lifetime logic

o)

(extended) J

12

=xample: Memory Allocation

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

r--——- - - ----=-=-=- == I
| g
r - - ------ - --=-=-=-=- == !
_ a3
confidential F———————— === - - = = | _ corl1f|denrtl|.al 5
virtual machine 1 R il IR virtual machine
r--—--------=-=-=- == I
\ == —m - ———m - — - cannot
can
r————— == === === == access
access N memory
memory '

S
\I page containing data | $

— o o m— o . - . o e - e o = o]

—— e e, P e, e, P e, S e, W e, O e, S e, W e, e, W e, B e, W e, e W

=xample: Memory Allocation

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

processor’s
core
executing
application’s
instructions

=xample: Memory Allocation

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

processor’s
read
memory core
management¢— executing
unit application’s

Instructions

=xample: Memory Allocation

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

4 A
s eeeble reads
root page table N~ . :
boints < ———————————————— configuration
10 I N
3 intermediate page table | \ memory
——————————————— M
management
unit
points
to
_______________ - J

— o o m— o . - . o e - e o = o]

=xample: Memory Allocation

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

— o o m— o . - . o e - e o = o]

read value or page fault—k

processor’s

core
executing

application’s
instructions

17

=xample: Memory Allocation

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

We must formally verity the
functional correctness of the
page table configuration.

— o - o o . . e . . - e o o= m—]

Let’s leverage Rust’s type
points system with its ownership and
memory safety guarantees!

— o o m— o . - . o e - e o = o]

18

=xample: Memory Allocation

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

pub struct MemoryTracker A{
pages: Vec<Page<UnAllocated>>,

— — — — o - - o - - - o e e

[

MemoryTrackerJ | __3

Rust construct

—— e e, P e, e, P e, S e, W e, O e, S e, W e, e, W e, B e, W e, e W

19

=xample: Memory Allocation

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

pub struct MemoryTracker A{
pages: Vec<Page<UnAllocated>>,

}

U pub struct Page {
address: usize,
size: PageSize,

- ———— ———

|

MemoryTracker | L __.
Rust construct r ““““““““ |

e e e, e, O e, e, e, W e, e, W e, e, O e, e, W e, W e,

20

=xample: Memory Allocation

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

pub(super) struct PageTable {
configuration_page: Page<Allocated>,
entries: Vec<PageTableEntry>,

r—-——-—"—-—"—"—-—"—-—"=-—=—-—-=-=-=-=-- | ’
| _ _ o _ _ ________g4 pub(super) enum PageTableEntry {
Pointer(PageTable, PageTableConfiguration),
P ro_(l)_t b F-—-~-~=~="========= | Leaf(Page<Allocated>, PageTableConfiguration,
ageliaple | _ _ _ _ _ _ _ _____o___ R

Rust construct PageTablePermission),

r——————=—=—===== == | NotValid,

. . Y D - 4 }

r—-——"—>"—~"~—~-=-=-—-=-=-=-=-- |

| _ _ _ _ _ _ _ _ _______g4

- — — m — mm —— - - -

- ———— ———

|

MemoryTracker | L __.
Rust construct r ““““““““ |

e e e, e, O e, e, e, W e, e, W e, e, O e, e, W e, W e,

21

=xample: Memory Allocation

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

pub(super) struct PageTable {
configuration_page: Page<Allocated>,
entries: Vec<PageTableEntry>,

_______________ }
r |
|y
root F:::::::::::::::'
PageTable |
Rust construct
r—— - ———— === — — = |
e e e e o pub struct Page {
Page L address: usize,
| . .
(token) |y size: PageSize,
_______________ F
r !
e | pub struct MemoryTracker {
MemoryTracker el e R pages: Vec<Page<UnAllocated>>,
Rust construct r _______________ | }

e e e, e, O e, e, e, W e, e, W e, e, O e, e, W e, W e,

22

=xample: Memory Allocation

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

pub fn write(&self, offset: usize, value: usize) {
_______________ assert!(offset + core::mem::size_of::i<usize>() <= self.size.in_bytes());

can read/Wnte F-——=—===—"=-"=-=-==-==-= | unsafe {

COnflgurathn - ((self.address.usize() + offset) as *mut usize).write_volatile(value)
b

root

PageTable

Rust construct

— — — — o - - o - - - o e e

— m— m— — o - — — e m— - e e m— —]

e e e, e, O e, e, e, W e, e, W e, e, O e, e, W e, W e,

23

=xample: Memory Allocation

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

Entry constructor

. root
PageTable

Rust construct

MemoryTracker
Rust construct

.

PageTable

Rust construct

— — — — o - - o - - - o e e

— m— m— — o - — — e m— - e e m— —]

e e e, e, O e, e, e, W e, e, W e, e, O e, e, W e, W e,

pub(super) struct PageTable {
configuration_page: Page<Allocated>,
entries: Vec<PageTableEntry>,

}

pub(super) enum PageTableEntry {
Pointer(PageTable, PageTableConfiguration),
Leaf(Page<Allocated>, PageTableConfiguration,
PageTablePermission),
NotValid,
Iy

24

=xample: Memory Allocation

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

pub(super) struct PageTable {
configuration_page: Page<Allocated>,

entries: Vec<PageTableEntry>,

r—-——"—"—"—"=—=-"=-=-=-=-=-=--= | ’
Entry constructor | L o o o o e o o g pub(super) enum PageTableEntry {
Pointer(PageTable, PageTableConfiguration),
P ro_(l)_t b F-—-~-~=~="========= | Leaf(Page<Allocated>, PageTableConfiguration,
age labie | ! L
———————————————— PageTablePermission),
Rust construct \ .
r | NotValid,
e e e o e 4 }
PageTable T |
Rust construct e
- —m mm - — -

R

[j Leaf o

I

MemoryTracker PageTableEntry o L L _.
Rust Construct RUSt ConStrUCt r—— - - - - - - - - - - = = = |

e e e, e, O e, e, e, W e, e, W e, e, O e, e, W e, W e,

25

=xample: Memory Allocation

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

intermediate page table '

points
to - — o m e mm——— - - |
L
[j Leaf | \ _ _ _ _ _ __________
|

PageTableEntry | _ _ _ _ _ _ datapage _ _ _ _,
Rust construct

=xample: Memory Allocation

Goal: To prove that two different confidential VMs cannot access
the same physical memory region in the confidential memory.

impl PageTable {
fn set_entry(&mut self, index: usize, value: PageTableEntry) {
self.configuration_page.write::<usize>(self.entry_size * index_in_page,
value.encode())

¥
r—-—————-—=—-——-—=—-—=—-—-=—=-—-= | b
I
Entry constructor}y - - 1 impl Page {
(root) F=--=--==--=-=-=-==-= pub fn write(&self, offset: usize, value: usize) {
: : -~ - - - - - - - - - - - = ' assert!(offset + core::mem::size_of:i<usize>() <= self.size.in_bytes());
PageTable erte Conflguratlon >| _______________] unsafe {
Rust construct ((self.address.usize() + offset) as *mut usize).write volatile(value)
r— - - - - - = = ;
intermediate page table | y '
_______________ -
}
_ impl PageTableEntry {
pomts pub fn encode(&self) —> usize {

to - — = — — = — — == = = match self {
| PageTableEntry::Leaf(page, configuration, permissions) => {
PageTableBits::Valid.mask()

_______________ | PageTableAddress::encode(page.address().usize())
I data page | | configuration.encode()
| permissions.encode()

27

Verifying page tokens
with RefinedRust

Impressions on using Rust

e System engineering:
o Sufficient ecosystem for writing embedded systems,

* Need to be careful to not falling into C style programming with Rust when
writing low-level code (hint: treat “unsafe” as a red flag and build safe
abstraction over hardware).

 Formal verification
* Ecosystem less mature than for C,

* Rust limits the developer but it forces to write code in a way that is easier to
prove. C gives more flexibility to the developer but the code is then more
difficult to prove.

Project status and future plans

* |mplementation status:

* Prototype running confidential VMs with VirtlO support
* (Goal for the next months:

 Add support for Linux-based VMs

* Verify the core of ACE’s paging system

* (Gradually adding more features to RefinedRust (including lots of usability
improvements); long-term: add another backend for speed

Open Questions

1. How to verify parts implemented in assembly and link with Rust verification?

2. How can we prove security properties on top of the functional verification?
* Feasible thanks to CoQg’s expressive logic!

3. How can we make unsafe Rust verification more scalable?

* RefinedRust’s usabillity is nowhere near more mature provers for safe Rust
(like Prusti, Creusot, etc.)

Thank you

Lennard Gaher & Wojciech Ozga

