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Type-Theory of Acyclic / Full Algorithms: Lλ
ar / Lλ

r , introduced by
Moschovakis [10] (2006)

Algorithmic CompSynSem of Natural Language (NL) via Lλ
ar / Lλ

r

NL Syn ⇐⇒︸ ︷︷ ︸
render

Lλ
ar /L

λ
r ⇐⇒ Algorithms for Comp.︸ ︷︷ ︸

Algorithmic Semantics

=⇒ Denotations︸ ︷︷ ︸
Denotational Semantics︸ ︷︷ ︸

Algorithmic CompSynSem Interfaces

Denotational Semantics of Lλ
ar / Lλ

r : by induction on terms

Reduction Calculus of Lλ
ar / Lλ

r : defined by (10+) reduction rules
A⇒ B

The reduction calculus of Lλ
ar / Lλ

r is effective (by a theorem):
For every A ∈ Terms, there is unique, up to congruence, canonical
form cf(A), s.th.:

A⇒cf cf(A)

Algorithmic Semantics of Lλ
ar / Lλ

r
For every algorithmically meaningful A ∈ Terms:

cf(A) determines the algorithm alg(A) for computing den(A)
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Development of Type-Theory of Full / Acyclic Algorithms: Lλ
ar / Lλ

r / DTTSI

Placement of Lλ
ar in a class of type theories

Montague IL ⊊ Gallin TY2 ⊊ Moschovakis Lλ
ar ⊊ Moschovakis Lλ

r (1)

?
⊊ DTTSitInfo (2)

In a series of papers, I extend Lλ
ar / Lλ

r by new computational
facilities, see Loukanova [1, 2, 3, 4, 5, 6, 7, 8, 9]
This talk is derived from Loukanova [7, 9]:

Lλ
ar / Lλ

r terms of propositional attitudes, including statements
Operators of Algorithmic Scope
ToScope for an unspecified, open scope B ∈ Terms(Lλ

r ):
ToScope(B)
C for the closure of a specified scope A ∈ Terms(Lλ

r ): C(A)
Extended reduction calculus of Lλ

ar / Lλ
r for the scope operators

Note: Dependent Type Theory of Situated Info (DTTSI) is not here:
partial relations without currying; dependent types; situations, . . .
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Syntax of Type Theory of Algorithms (TTA): Types, Vocabulary

Gallin Types (1975)

τ ::= e | t | s | (τ → τ) (Types)

Abbreviations

σ̃ ≡ (s → σ), for state-dependent objects of type σ̃ (3a)

ẽ ≡ (s → e), for state-dependent entities (3b)

t̃ ≡ (s → t), for state-dependent truth vals: propositions (3c)

Typed Vocabulary, for all σ ∈ Types

Constsσ = Kσ = {cσ0 , cσ1 , . . . } (4a)

∧,∨,→ ∈ Consts(τ→(τ→τ)), τ ∈ { t, t̃ } (logical constants) (4b)

¬ ∈ Consts(τ→τ), τ ∈ { t, t̃ } (logical constant for negation) (4c)

PureVσ = {vσ0 , vσ1 , . . . } (4d)

RecVσ = MemoryVσ = {pσ0 , pσ1 , . . . } (4e)

PureVσ ∩RecVσ = ∅, Varsσ = PureVσ ∪ RecVσ (4f)
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Definition (Terms of TTA: Lλ
ar acyclic recursion /Lλ

r full recursion)

A :≡ cσ : σ | xσ : σ | B(ρ→σ)(Cρ) : σ | λ(vρ) (Bσ) : (ρ→ σ) (5a)

| Aσ0
0 where { pσ1

1 := Aσ1
1 , . . . , . . . , pσn

n := Aσn
n } : σ0

(recursion term)
(5b)

| ∧ (Aτ
2)(A

τ
1) : τ | ∨ (Aτ

2)(A
τ
1) : τ | → (Aτ

2)(A
τ
1) : τ (5c)

| ¬(Bτ ) : τ (5d)

| ∀(vσ)(Bτ ) : τ | ∃(vσ)(Bτ ) : τ (pure quantifiers) (5e)

| Aσ0
0 such that {Cτ1

1 , . . . ,C
τm
m } : σ′

0 (restrictor terms) (5f)

| ToScope(Bσ̃) : (s → σ̃) (unspecified scope) (5g)

| C(Bσ̃(s)) : σ̃ (closed scope) (5h)

cσ ∈ Constsσ, xσ ∈ PureVσ ∪ RecVσ, vσ ∈ PureVσ

B,C ∈ Terms, pσi
i ∈ RecVσi , A

σi
i ∈ Termsσi , C

τj
j ∈ Termsτj

τ, τj ∈ { t, t̃ }, t̃ ≡ (s → t) (type of propositions)
ToScope : (σ̃ → (s → σ̃)), C : (σ → σ̃), s : RecVs (state), σ ≡ t
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Terms of TTA Lλ
ar acyclic recursion (Lλ

r full recursion) / conditions on well-formed terms

Acyclicity Constraint (AC), for Lλ
ar:

{ pσ1
1 := Aσ1

1 , . . . , pσn
n := Aσn

n } (n ≥ 0) (6a)

is acyclic sequence (system) iff (6b)

there is some rank : {p1, . . . , pn} → N (6c)

if pj occurs freely in Ai, then rank(pi) > rank(pj) (6d)

A term of the form (5b) is called acyclic recursion term,
in case its system of assignments satisfies the AC

Lλ
ar is type theory of acyclic algorithms,

in case Def. 1 is restricted to acyclic terms (5b)

Lλ
r is type theory of algorithms with full recursion:

without requiring that AC holds for all recursion terms
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Definition (Explicit and λ-Calculus Terms)

A ∈ Terms is explicit iff the constant where designating the
recursion operator does not occur in it
A ∈ Terms is a λ-calculus term iff it is explicit and no recursion
variables occur in it

Definition (Immediate and Proper Terms)

The set ImT of immediate terms is defined by recursion (7)

T :≡ V | p(v1) . . . (vm) | λ(u1) . . . λ(un)p(v1) . . . (vm) (7)

for V ∈ Vars, p ∈ RecV, ui, vj ,∈ PureV,
i = 1, . . . , n, j = 1, . . . ,m, (m,n ≥ 0)
Every A ∈ Terms that is not immediate is proper

PrT = (Terms− ImT) (8)

Immediate terms do not carry algorithmic sense.
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Repeated Calculations: by (9a)–(9b) of NL (as in typed λ-calculi); (9b)–(9k) in Lλ
ar

Some cube is large
render−−−→ T, large ∈ Consts((̃e→ t̃)→(̃e→ t̃)) (9a)

T ≡ ∃x
[
cube(x) ∧ large(cube)(x)︸ ︷︷ ︸

by predicate modification

]
⇒ . . . (9b)

from (9b), by (ap) incl. to ∧; (lq-comp); (rec-comp), (rec-comp) (9c)

⇒ ∃x
[
(c1 ∧ l) where { c1 := cube(x), (9d)

l := large(c2)(x), c2 := cube }
]

(9e)

⇒ ∃x(c′1(x) ∧ l′(x)) where { c′1 := λ(x)(cube(x)), (9f)

l′ := λ(x)(large(c′2(x))(x)), c
′
2 := λ(x)cube } (9g)

≡ cf(T ) (9f)–(9g) is by (ξ) on (9d)–(9e)

⇒γ∗ ∃x(c′1(x) ∧ l′(x)) where { c′1 := λ(x)(cube(x)), (9h)

l′ := λ(x)(large(c2)(x)), c2 := cube } (9i)

≡ cfγ*(T )

≈ ∃x(c′1(x) ∧ l′(x)) where { c′1 := cube, (9j)

l′ := λ(x)(large(c2)(x)), c2 := cube } (9k)



Some cube is large
render−−−→ C, without repeated calcs in Lλ

ar / Lλ
r

C ≡ ∃x
[
c(x) ∧ large(c)(x)

]︸ ︷︷ ︸
E0

where { c := cube } ⇒ . . . (10a)

⇒ ∃x
[(
c(x) ∧ l

)
where { l := large(c)(x) }

]︸ ︷︷ ︸
E1

where { c := cube }
(10b)

from (10a) by 2x(ap) to ∧ of E0; (lq-comp) to ∃;(rec-comp); (B-S); (head)

⇒
[
∃x

(
c(x) ∧ l′(x)

)
where { l′ := λ(x)

(
large(c)(x)

)
}︸ ︷︷ ︸

E2

]
where { c := cube }

(10c)

from (10b), by (ξ) to ∃

⇒ ∃x
(
c(x) ∧ l′(x)

)︸ ︷︷ ︸
C0 an algorithmic pattern

where { c := cube, l′ := λ(x)
(
large(c)(x)

)︸ ︷︷ ︸
instantiations of memory c, l′

} ≡ cf(C)
(10d)

from (10c), by (head); (cong)



Some cube is large
render−−−→ C, large ∈ Consts((̃e→ t̃)→(̃e→ t̃))

C ≡ ∃x
[
c(x) ∧ l1(c)(x)

]︸ ︷︷ ︸
E0

where { c := cube, l1 := large } (11a)

⇒ ∃x
[(
c(x) ∧ l2

)
where { l2 := l1(c)(x) }

]︸ ︷︷ ︸
E1

where { c := cube, l1 := large }
(11b)

from (11a), by (ap) to ∧ of E0; (lq-comp); (rec-comp)

⇒
[
∃x

(
c(x) ∧ l′2(x)

)
where { l′2 := λ(x)

(
l1(c)(x)

)
}︸ ︷︷ ︸

E2

]
where { c := cube, l1 := large }

(11c)

from (11b), by (ξ) to ∃ in E1; (rec-comp)

⇒ ∃x
(
c(x) ∧ l′2(x)

)︸ ︷︷ ︸
C0 an algorithmic pattern

where { l′2 := λ(x)
(
l1(c)(x)

)
, c := cube, l1 := large }︸ ︷︷ ︸

instantiations of memory c, l1, l
′

}
(11d)

≡ cf(C) from (11c), by (head)
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attitude / statment verbs, taking sentential complements
in Verb Phrases (VP)

τpa ≡ (̃t → (ẽ → t̃)) (12a)

claim
render−−−→ claim : τpa, state

render−−−→ state : τpa,

know
render−−−→ know : τpa, believe

render−−−→ believe : τpa, . . .
(12b)

ToScope : (̃t → (s → t̃)), C : (t → t̃) (operators) (12c)

Let ϕ, ψ be NL expressions, such that:

ψ is an attitude verb, e.g., ψ ≡ state (13a)

[ψ]v
render−−−→ B : τpa [ϕ]s

render−−−→ A : t̃ (proposition) (13b)

For fresh variables c ∈ RecVτpa , sc ∈ RecVs, we set:

[ψ (that) ϕ ]vp
render−−−→ c

(
ToScope(A)(sc)

)
where { c := B } (14a)

⇒ c
(
q
)
where { q := ToScope(A)(sc), c := B } : (ẽ → t̃) (14b)
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⟨ṡc, Jimj states that some cube is large ⟩ render−−−→ A (15a)

A ≡ c
(
ToScope

[
∃x

(
c(x) ∧ l′2(x)

)
where { l′2 := λ(x)

(
l1(c)(x)

)
,

c := cube, l1 := large }
]
(sc)

)
(j)

(15b)

where { j := jim, c := states } (15c)

⇒ c(q)(j) where

{ q := ToScope
[
∃x

(
c(x) ∧ l′2(x)

)
where { l′2 := λ(x)

(
l1(c)(x)

)
,

c := cube, l1 := large }
]
(sc),

(15d)

j := jim, c := states } (15e)

⇒cf c(q)(j) where

{ q := C
[
∃x

(
c(x) ∧ l′2(x)

)
(sr1)

where { l′2 := λ(x)
(
l1(c)(x)

)
,

c := cube, l1 := large }
]
,

(15f)

j := jim, c := states } ≡ cf(A1) (15g)

from (15d)–(15e) by (ScopeR), (rec-comp)
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Instantiations and Alternative Scoping: More Efficiency

⟨ṡc, Jimj states that some cube is large ⟩ render−−−→ Ai(i = 1, 2) (16)

A1 ≡ c(q)(j) where

{ q := C
[
∃x

(
c(x) ∧ l′2(x)

)
(sr1)

where { l′2 := λ(x)
(
l1(c)(x)

)
,

c := cube, l1 := large }
]
,

(17a)

j := jim, c := states } ≡ cf(A1) (17b)

A2 ≡ c(q)(j) where

{ q := C
[
∃x

(
c(x) ∧ l′2(x)

)
(sr2)

where { l′2 := λ(x)
(
l1(c)(x)

)
,

l1 := large }
]
,

(18a)

c := cube, j := jim, c := states } ≡ cf(A2) (18b)
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Generalised Two-Argument Quantifiers: Q :
(
(ẽ → t̃) →

(
(ẽ → t̃) → t̃

))
some, every

render−−−→ some, every ∈ Consts[(̃e→t̃)→((̃e→t̃)→t̃)] (19)

[someDet cubeN]NP
render−−−→ some(cube) : ((ẽ → t̃) → t̃) (20)

⇒cf

[
some(d) where { d := cube }

]
(21)

Some cube is large
render−−−→ A0/A1/A2 (options) (22a)

A0 ≡
(
some(cube)

)
(large0) : t̃ typical λ-calculi term (22b)

⇒cf some(p1)(p2) where {p1 := cube, p2 := large0}︸ ︷︷ ︸
recursion term

(22c)

A1 ≡ some(p1)(p2) where {p1 := cube, p2 := large(p1)} (22d)

A2 ≡ Q(p1)(p2)︸ ︷︷ ︸
alg. pattern

where {Q := some, p1 := cube, p2 := large(p1)︸ ︷︷ ︸
instantiations of memory

}

(22e)

Alternatives: Q := every , Q := one, Q := two, Q := most , etc.
No explicit terms are algorithmically equivalent to A1 and A2: proved

15 / 32



Overview of Type-Theory of Algorithms
Syntax of Lλ

ar / Lλ
r

Rendering and Reductions
Reduction Calculus

Motivations and Outlook
References

Reduction Rules
Compositionality Rules
γ∗-Reduction
Scope Rule; Derived Scope Rules
Some Theoretical Results of Lλ

ar

Reduction Rules (to be continued)

[Congruence] If A ≡c B, then A⇒ B (cong)

[Transitivity] If A⇒ B and B ⇒ C, then A⇒ C (trans)

Congruence Relation, informally
The congruence relation is the smallest (equivalence) relation
between Lλ

ar-terms, such that it is:

reflexive, symmetric, transitive

closed under:

operators of term formation

renaming bound variables (pure and recursion), without causing
collisions

re-ordering of the assignments within the recursion terms

re-ordering of the restriction sub-terms in the restriction terms
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[Compositionality]

• If A⇒ A′ and B ⇒ B′, then A(B) ⇒ A′(B′) (ap-comp)

• If A⇒ B, and ξ ∈ {λ, ∃,∀ }, then ξ(u)(A) ⇒ ξ(u)(B) (lq-comp)

• If Ai ⇒ Bi (i = 0, . . . , n), then

A0 where { p1 := A1, . . . , pn := An }
⇒ B0 where { p1 := B1, . . . , pn := Bn }

(rec-comp)

• If A0 ⇒ B0 and Ci ⇒ Ri (i = 0, . . . , n), then

A0 such that {C1, . . . , Cn }
⇒ B0 such that {R1, . . . , Rn }

(st-comp)

Compositionality of Scope Operators (in the extended Lλ
ar)

If A⇒ A′ then ToScope(A) ⇒ ToScope(A′) (S-comp)

If A⇒ A′ then C(A) ⇒ C(A′) (C-comp)
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Reduction Rules (to be continued)

[Head Rule] Given that pi ̸= qj and no pi occurs freely in any Bj ,(
A0 where {−→p :=

−→
A }

)
where {−→q :=

−→
B }

⇒ A0 where {−→p :=
−→
A, −→q :=

−→
B }

(head)

[Bekič-Scott Rule] Given that pi ̸= qj and no qi occurs freely in any Aj

A0 where { p :=
(
B0 where {−→q :=

−→
B }

)
, −→p :=

−→
A }

⇒ A0 where { p := B0,
−→q :=

−→
B, −→p :=

−→
A }

(B-S)

[Recursion-Application Rule] Given that no pi occurs freely in B,(
A0 where {−→p :=

−→
A }

)
(B)

⇒ A0(B) where {−→p :=
−→
A }

(recap)

18 / 32



Overview of Type-Theory of Algorithms
Syntax of Lλ

ar / Lλ
r

Rendering and Reductions
Reduction Calculus

Motivations and Outlook
References

Reduction Rules
Compositionality Rules
γ∗-Reduction
Scope Rule; Derived Scope Rules
Some Theoretical Results of Lλ

ar

Reduction Rules (to be continued)

[Application Rule] Given that B ∈ PrT is a proper term, and fresh
p ∈

[
RecV−

(
FV

(
A(B)

)
∪ BV

(
A(B)

))]
,

A(B) ⇒
[
A(p) where { p := B }

]
(ap)

[λ and Pure Quantifier Rules] Let ξ ∈ {λ,∃,∀ }.
Given fresh p′i ∈

[
RecV−

(
FV(A) ∪ BV(A)

)]
, i = 1, . . . , n, for

A ≡ A0 where { p1 := A1, . . . , pn := An } and replacements A′
i in (27):

A′
i ≡

[
Ai

{
p1 :≡ p′1(u), . . . , pn :≡ p′n(u)

}]
(27)

ξ(u)
(
A0 where { p1 := A1, . . . , pn := An }

)
⇒ ξ(u)A′

0 where { p′1 := λ(u)A′
1, . . . , p

′
n := λ(u)A′

n }
(ξ)
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Restriction Rules of Lλ
rar

each Rτi
i ∈ Terms in

−→
R is immediate and τi ∈ { t, t̃ }

each C
τj
j ∈ Terms is proper and τj ∈ { t, t̃ } (j = 1, . . . ,m, m ≥ 0)

a0, cj ∈ RecV (j = 1, . . . ,m) fresh

(st1) Rule A0 is an immediate term, m ≥ 1

(A0 such that {C1, . . . , Cm,
−→
R }) (st1)

⇒ (A0 such that { c1, . . . , cm,
−→
R })

where { c1 := C1, . . . , cm := Cm }

(st2) Rule A0 is a proper term

(A0 such that {C1, . . . , Cm,
−→
R }) (st2)

⇒ (a0 such that { c1, . . . , cm,
−→
R })

where { a0 := A0,

c1 := C1, . . . , cm := Cm }
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γ- and γ∗-Rules stronger reduction

Definition (γ∗-condition)

A term A ∈ Terms satisfies the γ∗-condition for an assignment
p := λ(−→u −→σ )λ(vσ)P τ : (−→σ → (σ → τ)), with respect to λ(vσ),
iff A is of the form: (30a)–(30c):

A ≡ A0 where {−→a :=
−→
A, (30a)

p := λ(−→u )λ(v)P, (30b)
−→
b :=

−→
B } (30c)

such that the following holds:

1 v ̸∈ FreeVars(P )

2 All occurrences of p in A0,
−→
A , and

−→
B are occurrences:

in p(−→u )(v),
which are in the scope of λ(v) (preserves the free occurrences of v)
modulo renaming the variables −→u , v:
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(γ∗)-rule

A ≡ A0 where {−→a :=
−→
A, (31a)

p := λ(−→u )λ(v)P, (31b)
−→
b :=

−→
B } (31c)

⇒(γ∗) A
′
0 where {−→a :=

−→
A ′, (31d)

p′ := λ(−→u )P, (31e)
−→
b :=

−→
B′ } (31f)

given that:

A ∈ Terms satisfies the γ∗-condition (in Definition 4) for
p := λ(−→u )λ(v)P : (−→σ → (σ → τ)), with respect to λ(v)
p′ ∈ RecV(−→σ→τ) is a fresh recursion variable
−→
X ′ ≡

−→
X{p(−→u )(v) :≡ p′(−→u )} is the result of the replacements

Xi{p(−→u )(v) :≡ p′(−→u )},
i.e., replacing all occurrences of p(−→u )(v) by p′(−→u ), in all
corresponding parts Xi ≡ Ai, Xi ≡ Bi, in (31a)–(31f), modulo
renaming the variables −→u , v
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Reduction Rules

[Scope Rule] Closure of part of the unspecified, open scope

ToScope
(
B0 where {−→c :=

−→
C ,−→q :=

−→
B︸ ︷︷ ︸ })︸ ︷︷ ︸

unspecified, open scope

(sc)

⇒ C
(
B0(sr) where {−→c :=

−→
C }

)︸ ︷︷ ︸
closed scope

where { −→q :=
−→
B︸ ︷︷ ︸

outside C scope

}
(ScopeR)

23 / 32



Overview of Type-Theory of Algorithms
Syntax of Lλ

ar / Lλ
r

Rendering and Reductions
Reduction Calculus

Motivations and Outlook
References

Reduction Rules
Compositionality Rules
γ∗-Reduction
Scope Rule; Derived Scope Rules
Some Theoretical Results of Lλ

ar

Derived Reduction Rules

Lemma (Bekič-Scott Scope)

A0 where { p := ToScope
(
B0 where {−→c :=

−→
C ,−→q :=

−→
B }

)
(sc),

−→p :=
−→
A }

⇒ A0 where { p := C
(
B0(sr) where {−→c :=

−→
C }

)
, (B-S-sc)

−→q :=
−→
B, −→p :=

−→
A }

Proof.

By the reduction rules:

(ScopeR)
compositionality of recursion (rec-comp)
Bekič-Scott Rule (B-S)

The (head) rule is similarly generalized to the derived rule for scopes.
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Theorem (Canonical Form Theorem)

For every A ∈ Terms, there is a unique up to congruence, irreducible
term cf(A) ∈ Terms, such that:

1 A⇒ cf(A)

2 for every B, if A⇒ B and B is irreducible, then B ≡c cf(A), i.e.,
cf(A) is the unique, up to congruence, term to which A can be
reduced

3 (a) FreeRecV(cf(A)) = FreeRecV(A)
(b) FreePureV(cf(A)) = FreePureV(A)

4 Consts(cf(A)) = Consts(A)

Proof.

The proof is by induction on term structure of A, (5a)–(5e), (5h), using
reduction rules, definitions, and properties of reduction.
The reduction rules and their applications do not remove and do not add
any constants and free variables.
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Algorithmic Semantic of Lλ
ar / Lλ

r

How is the algorithmic semantics provided?

For each proper (i.e., non-immediate) A ∈ Terms, cf(A) determines
the algorithm alg(A) for computing den(A)

By the Canonical Form Theorem 6:

Theorem (Effective Reduction Calculi)

For every term A ∈ Terms, its canonical form cf(A) is effectively
computed, by the extended reduction calculus:

A⇒ cf(A)
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Motivation & Otlook for Type Theory Lλ
ar / Lλ

r / DTTSI

Lλ
ar / Lλ

r / DTTSI provide Computational Semantics with:
denotations
algorithms for computing denotations

Parametric Algorithmic Patterns, for efficient semantic
representations, ambiguities, and underspecifications
Parameters can be instantiated depending on:
context, specific areas of applications, etc.
Translations between natural language of mathematics and formal
languages of proof and verification systems
Representation of mathematical statements
proven or verified, or neither

Lλ
ar / Lλ

r with logical operators and pure quantifiers
Lλ
ar / Lλ

r can be used for proof-theoretic computational reasoning
and inferences of semantic information

Lλ
ar / Lλ

r in Dependent-Type Theory of Situated Info (DTTSI)

Looking Forward!
Thanks!
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