On Regular Constraint Propagation for Solving string Constraints

Philipp Rümmer
University of Regensburg
Uppsala University
EPFL, 2024-06-15

Joint work with
Artur Jeż, Matt Hague, Anthony W. Lin, Oliver Markgraf, and others

What are String Constraints?

Strings =

- finite sequences of letters over a finite alphabet (e.g., Unicode)
String contraints =
- quantifier-free formulas over string variables, including operations like:
- String concatenation (word equations)
- String length
- Substring, character access
- Regular expressions

Strings in Verification

```
// Pre= (true)
String s= ', ;
\(/ / P_{1}=(s \in \epsilon)\)
while (*) \{
    \(/ / P_{2}=\left(s=u \cdot v \wedge u \in a^{*} \wedge v \in b^{*} \wedge|u|=|v|\right)\)
    \(\mathrm{s}=\) ' a ' \(+\mathrm{s}+\mathrm{b}^{\prime} \mathrm{b}\);
\}
\(/ / P_{3}=P_{2}\)
assert (!s.contains ('ba') \&\& (s.length() \% 2) == 0) ;
\(/ /\) Post \(=P_{3}\)
```


Strings in Verification

ASCII, Unicode

```
// Pre=(true)
```

String s= '';
$/ / P_{1}=(s \in \epsilon)$
while (*) \{
$/ / P_{2}=\left(s=u \cdot v \wedge u \in a^{*} \wedge v \in b^{*} \wedge|u|=|v|\right)$
$\mathrm{s}=$ ' a ' $+\mathrm{s}+\mathrm{b}^{\prime} \mathrm{b}$;
\}
$/ / P_{3}=P_{2}$
assert (!s.contains ('ba') \&\& (s.length() \% 2) == 0) ;
$/ /$ Post $=P_{3}$

Strings in Verification

Regular expression
 assertion: $s=\epsilon$

```
// Pre=(
String \(s=\),';
\(/ / P_{1}=(s \in \epsilon)\)
while (*) \{
    \(/ / P_{2}=\left(s=u \cdot v \wedge u \in a^{*} \wedge v \in b^{*} \wedge|u|=|v|\right)\)
    \(\mathrm{s}=\) ' a ' \(+\mathrm{s}+\mathrm{b}^{\prime} \mathrm{b}\);
\}
\(/ / P_{3}=P_{2}\)
assert (!s.contains ('ba') \&\& (s.length() \% 2) == 0) ;
// Post \(=P_{3}\)
```


Strings in Verification

```
// Pre=(true)
String s= '';
// P}\mp@subsup{P}{1}{\prime}=(s\in\epsilon
while(*){
    // P}\mp@subsup{P}{2}{}=(s=u\cdotv\wedgeu\in\mp@subsup{a}{}{*}\wedgev\in\mp@subsup{b}{}{*}\wedge||u|=|v|
    s= 'a' + s + 'b';
}
// P P = P2 
// Post= P3
Word/string
concatenation
```


Strings in Verification

```
// Pre=(true)
String s= '';
// P
while(*){
    // P}\mp@subsup{P}{2}{}=(s=u\cdotv\wedgeu\in\mp@subsup{a}{}{*}\wedgev\in\mp@subsup{b}{}{*}\wedge|u|=|v|
    s= 'a' + s + 'b';
}
// P}\mp@subsup{P}{3}{}=\mp@subsup{P}{2}{
assert(!s.contains('ba') && (s.length() % 2) == 0);
// Post = P3
```


Strings in Verification

$$
\begin{aligned}
& \text { // Pre= (true) } \\
& \text { String s= ''; } \\
& / / P_{1}=(s \in \epsilon) \\
& \text { while (*) \{ } \\
& / / P_{2}=\left(s=u \cdot v \wedge u \in a^{*} \wedge v \in b^{*} \wedge|u|=|v|\right) \\
& \mathrm{s}=\text { ' } \mathrm{a} \text { ' }+\mathrm{s}+\mathrm{b}^{\prime} \mathrm{b} \text {; } \\
& \text { \} } \\
& \text { // } P_{3}=P_{2} \\
& \text { assert (!s.contains ('ba') \&\& (s.length() \% 2) == 0) ; } \\
& \text { // Post }=P_{3} \\
& \text { constraint }
\end{aligned}
$$

Strings in Verification

```
// Pre= (true)
String s= ', ;
\(/ / P_{1}=(s \in \epsilon)\)
while (*) \{
    \(/ / P_{2}=\left(s=u \cdot v \wedge u \in a^{*} \wedge v \in b^{*} \wedge|u|=|v|\right)\)
    \(\mathrm{s}=\) ' a ' \(+\mathrm{s}+\mathrm{b}^{\prime} \mathrm{b}\);
\}
\(/ / P_{3}=P_{2}\)
assert (!s.contains ('ba') \&\& (s.length() \% 2) == 0) ;
\(/ /\) Post \(=P_{3}\)
```


Or regex:

$s \notin \Sigma^{*} \cdot b a \cdot \Sigma^{*}$

Strings in Verification

```
// Pre= (true)
String \(s=\), ' ;
\(/ / P_{1}=(s \in \epsilon)\)
while (*) \{
    \(/ / P_{2}=\left(s=u \cdot v \wedge u \in a^{*} \wedge v \in b^{*} \wedge|u|=|v|\right)\)
    \(\mathrm{s}={ }^{\prime} \mathrm{a}^{\prime}+\mathrm{s}+\mathrm{b}^{\prime} ;\)
\}
\(/ / P_{3}=P_{2}\)
assert (!s.contains ('ba') \&\& (s.length() \% 2) == 0) ;
// Post \(=P_{3}\)
```


Presburger

``` length constraint
```


Strings in Verification

```
// Pre= (true)
String s= ', ;
\(/ / P_{1}=(s \in \epsilon)\)
while (*) \{
    \(/ / P_{2}=\left(s=u \cdot v \wedge u \in a^{*} \wedge v \in b^{*} \wedge|u|=|v|\right)\)
    \(\mathrm{s}=\) ' a ' \(+\mathrm{s}+\mathrm{b}^{\prime} \mathrm{b}\);
\}
\(/ / P_{3}=P_{2}\)
assert (!s.contains ('ba') \&\& (s.length() \% 2) == 0) ;
\(/ /\) Post \(=P_{3}\)
```


Strings in Verification

```
// Pre= (true)
String s= ', ;
\(/ / P_{1}=(s \in \epsilon)\)
while (*) \{
    \(/ / P_{2}=\left(s=u \cdot v \wedge u \in a^{*} \wedge v \in b^{*} \wedge|u|=|v|\right)\)
    \(\mathrm{s}=\) ' a ' \(+\mathrm{s}+\mathrm{b}^{\prime} \mathrm{b}\);
\}
\(/ / P_{3}=P_{2}\)
assert (!s.contains ('ba') \&\& (s.length() \% 2) == 0) ;
// Post \(=P_{3}\)
```

Main application area of string solving: security analysis

A billion SMT queries a day

CAV keynote lecture by the director of applied science for AWS Identity explains how AWS is making the power of automated reasoning available to all customers.

By Neha Rungta
Share
August 18, 2022

At this year's Computer-Aided Verification (CAV) conference - a leading automatedreasoning conference collocated with the Federated Logic Conferences (FLOC) Amazon's Neha Rungta delivered a keynote talk in which she suggested that innovations at Amazon have "ushered in the golden age of automated reasoning".

Amazon scientists and engineers are using automated reasoning to prove the correctness of critical internal systems and to help customers prove the security of their cloud infrastructures. Many of these innovations are being driven by powerful reasoning engines called SMT solvers.

Satisfiability problems, or SAT, ask

A billion SMT queries a day

 whether it's possible to assign variables
Satisfiability Modulo Theories

- Many new SMT solvers for strings have emerged in the last years
- SMT-LIB theory of strings
- SMT-COMP has a QF_Strings division

Some String Solvers

- Hampi
- Kaluza
- Stranger
- Gecode+S
- GStrings
- Z3
- Z3-str/2/3/4/alpha
- CVC4/cvc5
- Norn
- S3/p/\#
- TRAU
- nfa2sat
- OSTRICH
- Z3-Noodler
- Woorpje
- BEK, REX
- SLOG, SLENT
- (many more)

What's Decidable about ...

What's Decidable about ...

This is already in solved form

Word Equations

What's Decidable about ...

In general, two main decision procedures:
Makanin \& Recompression

This is already in solved form

$$
z=w_{1} \cdot y \cdot w_{2} \cdot x \cdot w_{3}
$$

Word Equations

What's Decidable about ...

In general, two main decision procedures:
Makanin \& Recompression

This is already in solved form

$$
z=w_{1} \cdot y \cdot w_{2} \cdot x \cdot w_{3}
$$

Word Equations

What's Decidable about ...

What's Decidable about ...

Regex
 Constraints
 $$
z=w_{1} \cdot y \cdot w_{2} \cdot x \cdot w_{3}
$$
 Word Equations

What's Decidable about ...

Regex
 Constraints
 $$
z=w_{1} \cdot y \cdot w_{2} \cdot x \cdot w_{3}
$$
 Word Equations

What's Decidable about ...

In Practice

Solvers use wide variety of techniques:

- Encoding as bit-vectors
- Encoding as SAT problem
- Rewriting/simplification rules
- Automata methods, derivatives
- Splitting rules for word equations
- (Re)Compression
- Propagation and CP methods
- etc.

Completeness

- Already for just word equations, decision procedures are complicated and impractical (not implementable?)
- String solvers are generally incomplete (for proving word equations unsat)

Completeness

- Already for just word equations, decision procedures are complicated and impractical (not implementable?)
- String solvers are generally incomplete (for proving word equations unsat)
- Simpler decision procedures exist for various fragments (and are implemented by some solvers)

Some Identified Fragments

- Quadratic word equations
- Tree-shaped
- Acyclic
- Chainfree
- Straightline
- Cost-enriched straightline
- Weakly chaining

Some Identified Fragments

- Quadratic word equations
- Tree-shaped
- Acyclic
- Chainfree
- Straightline
- Cost-enriched straightline
- Weakly chaining

Some Identified Fragments

- Quadratic word equations
- Tran -hannd

Is it possible to unify definitions?
Possible to have a common proof format?
" Lıaı!"ce

- Straightline
- Cost-enriched straightline
- Weakly chaining

Ad-hoc decision procedures

Relationship often unclear

Our Working Hypothesis

(Most/many/some/...) decision procedures can be understood as a combination of:

- Nielsen's transformation
- Propagation of regular constraints
- (Simplification rules)

Nielsen Transformation

$$
x \cdot y=u \cdot{ }^{\prime} a b^{\prime} \cdot v
$$

Nielsen Transformation

$$
x \cdot y=u \cdot{ }^{‘} a b^{\prime} \cdot v
$$

Nielsen Transformation

$$
x \cdot y=u \cdot{ }^{‘} a b^{\prime} \cdot v
$$

M

M

$x=u_{1}$
$\wedge y=u_{2} \cdot{ }^{‘} a b{ }^{\prime} \cdot v$

$$
\begin{aligned}
x & =u \cdot{ }^{\prime} a \\
\wedge y & =' b \cdot \cdot v
\end{aligned}
$$

$$
\begin{aligned}
x & =u \cdot{ }^{‘} a b \cdot \\
\wedge & v_{1} \\
\wedge & =v_{2} \\
\wedge v & =v_{1} \cdot v_{2}
\end{aligned}
$$

Nielsen Transformation

$$
x \cdot y=u \cdot{ }^{\prime} a b \cdot v
$$

In general, this style of reasoning does not terminate. Most solvers split equations anyway.

M

M

M

$$
\begin{aligned}
x & =u \cdot{ }^{‘} a b \cdot \\
\wedge & v_{1} \\
\wedge & =v_{2} \\
\wedge v & =v_{1} \cdot v_{2}
\end{aligned}
$$

Our Working Hypothesis

(Most/many/some/...) decision procedures can be understood as a combination of:

- Nielsen's transformation
- Propagation of regular constraints
- (Simplification rules)

Constraint Normalization

String constraints can be rewritten to Boolean combinations of:

- Equations $x=y$
- Function applications $x=f(\bar{y})$
- Membership predicates $x \in \mathcal{L}$
- (ignoring length)

$$
x \cdot y=‘ a b \text { becomes } z=\operatorname{concat}(x, y) \wedge z \in a b
$$

Regular Constraint Prop.

$\notin \frac{\Gamma, x \in e^{c}}{\Gamma, x \notin e} \neq \frac{\Gamma, x \neq y, y=f\left(x_{1}, \ldots, x_{n}\right)}{\Gamma, x \neq f\left(x_{1}, \ldots, x_{n}\right)}$ where y is fresh Cut $\frac{\Gamma, x \in e \quad \Gamma, x \in e^{c}}{\Gamma}$
$=-\operatorname{Prop} \frac{\Gamma, x \in e, x=y, y \in e}{\Gamma, x \in e, x=y} \quad \neq-$ SubSUME$\frac{\Gamma, x \in e_{1}, y \in e_{2}}{\Gamma, x \in e_{1}, x \neq y, y \in e_{2}}$ if $\mathcal{L}\left(e_{1}\right) \cap \mathcal{L}\left(e_{2}\right)=\emptyset$
$=-$ Prop-Elim $\frac{\Gamma, x \in e, y \in e}{\Gamma, x \in e, x=y}$ if $|\mathcal{L}(e)|=1 \quad \neq-\operatorname{Prop}-E l i m \frac{\Gamma, x \in e, y \in e^{c}}{\Gamma, x \in e, x \neq y}$ if $|\mathcal{L}(e)|=1$

$$
\text { Close } \overline{\Gamma, x \in e_{1}, \ldots, x \in e_{n}}
$$

$$
\text { if } \mathcal{L}\left(e_{1}\right) \cap \cdots \cap \mathcal{L}\left(e_{n}\right)=\emptyset
$$

Subsume $\frac{\Gamma, x \in e_{1}, \ldots, x \in e_{n}}{\Gamma, x \in e, x \in e_{1}, \ldots, x \in e_{n}}$

$$
\text { if } \mathcal{L}\left(e_{1}\right) \cap \cdots \cap \mathcal{L}\left(e_{n}\right) \subseteq \mathcal{L}(e)
$$

$$
\operatorname{INTERSECT} \frac{\Gamma, x \in e}{\Gamma, x \in e_{1}, \ldots, x \in e_{n}}
$$

$$
\text { if } \quad \begin{aligned}
& n>1 \text { and } \\
& \mathcal{L}\left(e_{1}\right) \cap \cdots \cap \mathcal{L}\left(e_{n}\right)=\mathcal{L}(e)
\end{aligned}
$$

FWd-Prop $\frac{\Gamma, x \in e, x=f\left(x_{1}, \ldots, x_{n}\right), x_{1} \in e_{1}, \ldots, x_{n} \in e_{n}}{\Gamma, x=f\left(x_{1}, \ldots, x_{n}\right), x_{1} \in e_{1}, \ldots, x_{n} \in e_{n}} \quad$ if $\mathcal{L}(e)=f\left(\mathcal{L}\left(e_{1}\right), \ldots, \mathcal{L}\left(e_{n}\right)\right)$
Fwd-Prop-Elim $\frac{\Gamma, x \in e, x_{1} \in e_{1}, \ldots, x_{n} \in e_{n}}{\Gamma, x=f\left(x_{1}, \ldots, x_{n}\right), x_{1} \in e_{1}, \ldots, x_{n} \in e_{n}} \quad$ if $\quad \begin{aligned} & \mathcal{L}(e)=f\left(\mathcal{L}\left(e_{1}\right), \ldots, \mathcal{L}\left(e_{n}\right)\right) \\ & \text { and }|\mathcal{L}(e)|=1\end{aligned}$
BWD-Prop $\frac{\left\{\Gamma, x \in e, x=f\left(x_{1}, \ldots, x_{n}\right), x_{1} \in e_{1}^{i}, \ldots, x_{n} \in e_{n}^{i}\right\}_{i=1}^{k}}{\Gamma, x \in e, x=f\left(x_{1}, \ldots, x_{n}\right)}$
if f $f^{-1}(\mathcal{L}(e))=$
$\bigcup_{i=1}^{k}\left(\mathcal{L}\left(e_{1}^{i}\right) \times \cdots \times \mathcal{L}\left(e_{n}^{i}\right)\right)$
$\notin \frac{\Gamma, x \in e^{c}}{\Gamma, x \notin e} \neq \frac{\Gamma, x \neq y, y=f\left(x_{1}, \ldots, x_{n}\right)}{\Gamma, x \neq f\left(x_{1}, \ldots, x_{n}\right)}$ where y is fresh $\quad \operatorname{Cut} \frac{\Gamma, x \in e \quad \Gamma, x \in e^{c}}{\Gamma}$
$=-\operatorname{Prop} \frac{\Gamma, x \in e, x=y, y \in e}{\Gamma, x \in e, x=y} \quad \neq-$ SubSUME$\frac{\Gamma, x \in e_{1}, y \in e_{2}}{\Gamma, x \in e_{1}, x \neq y, y \in e_{2}}$ if $\mathcal{L}\left(e_{1}\right) \cap \mathcal{L}\left(e_{2}\right)=\emptyset$
$=-$ Prop-Elim $\frac{\Gamma, x \in e, y \in e}{\Gamma x \in \rho x=1}$ if $|\mathcal{L}(e)|=1 \quad \neq-\operatorname{Prop-Elim} \frac{\Gamma, x \in e, y \in e^{c}}{\Gamma x \in \rho x \neq u}$ if $|\mathcal{L}(e)|=1$

$$
\operatorname{INTERSECT} \frac{\Gamma, x \in e}{\Gamma, x \in e_{1}, \ldots, x \in e_{n}}
$$

$$
\text { if } \begin{aligned}
& n>1 \text { and } \\
& \mathcal{L}\left(e_{1}\right) \cap \cdots \cap \mathcal{L}\left(e_{n}\right)=\mathcal{L}(e)
\end{aligned}
$$

FWD-Prop $\frac{\Gamma, x \in e, x=f\left(x_{1}, \ldots, x_{n}\right), x_{1} \in e_{1}, \ldots, x_{n} \in e_{n}}{\Gamma, x=f\left(x_{1}, \ldots, x_{n}\right), x_{1} \in e_{1}, \ldots, x_{n} \in e_{n}} \quad$ if $\mathcal{L}(e)=f\left(\mathcal{L}\left(e_{1}\right), \ldots, \mathcal{L}\left(e_{n}\right)\right)$
FWd-Prop-ELim $\frac{\Gamma, x \in e, x_{1} \in e_{1}, \ldots, x_{n} \in e_{n}}{\Gamma, x=f\left(x_{1}, \ldots, x_{n}\right), x_{1} \in e_{1}, \ldots, x_{n} \in e_{n}} \quad$ if $\quad \begin{aligned} & \mathcal{L}(e)=f\left(\mathcal{L}\left(e_{1}\right), \ldots, \mathcal{L}\left(e_{n}\right)\right) \\ & \text { and }|\mathcal{L}(e)|=1\end{aligned}$
BWd-Prop $\frac{\left\{\Gamma, x \in e, x=f\left(x_{1}, \ldots, x_{n}\right), x_{1} \in e_{1}^{i}, \ldots, x_{n} \in e_{n}^{i}\right\}_{i=1}^{k}}{\Gamma, x \in e, x=f\left(x_{1}, \ldots, x_{n}\right)}$

$$
\text { if } \begin{aligned}
& f^{-1}(\mathcal{L}(e))= \\
& \bigcup_{i=1}^{k}\left(\mathcal{L}\left(e_{1}^{i}\right) \times \cdots \times \mathcal{L}\left(e_{n}^{i}\right)\right)
\end{aligned}
$$

FWD-Prop $\frac{\Gamma, x \in e, x=f\left(x_{1}, \ldots, x_{n}\right), x_{1} \in e_{1}, \ldots, x_{n} \in e_{n}}{\Gamma, x=f\left(x_{1}, \ldots, x_{n}\right), x_{1} \in e_{1}, \ldots, x_{n} \in e_{n}} \quad$ if $\mathcal{L}(e)=f\left(\mathcal{L}\left(e_{1}\right), \ldots, \mathcal{L}\left(e_{n}\right)\right)$

$$
\begin{aligned}
& \notin \frac{\Gamma, x \in e^{c}}{\Gamma, x \notin e} \neq \frac{\Gamma, x \neq y, y=f\left(x_{1}, \ldots, x_{n}\right)}{\Gamma, x \neq f\left(x_{1}, \ldots, x_{n}\right)} \text { where } y \text { is fresh } \quad \text { CuT } \frac{\Gamma, x \in e \quad \Gamma, x \in e^{c}}{\Gamma} \\
& =-\operatorname{Prop} \frac{\Gamma, x \in e, x=y, y \in e}{\Gamma, x \in e, x=y} \quad \neq- \text { SubSUME} \frac{\Gamma, x \in e_{1}, y \in e_{2}}{\Gamma, x \in e_{1}, x \neq y, y \in e_{2}} \text { if } \mathcal{L}\left(e_{1}\right) \cap \mathcal{L}\left(e_{2}\right)=\emptyset \\
& =- \text { Prop-Elim } \frac{\Gamma, x \in e, y \in e}{\Gamma, x \in e, x=y} \text { if }|\mathcal{L}(e)|=1 \quad \neq- \text { Prop-Elim } \frac{\Gamma, x \in e, y \in e^{c}}{\Gamma, x \in e, x \neq y} \text { if }|\mathcal{L}(e)|=1 \\
& \text { Close } \overline{\Gamma, x \in e_{1}, \ldots, x \in e_{n}} \\
& \text { if } \mathcal{L}\left(e_{1}\right) \cap \cdots \cap \mathcal{L}\left(e_{n}\right)=\emptyset \\
& \text { SUbSUME }^{\Gamma, x \in e_{1}, \ldots, x \in e_{n}} \begin{array}{r}
\Gamma, x \in e, x \in e_{1}, \ldots, x \in e_{n}
\end{array} \\
& \text { if } \mathcal{L}\left(e_{1}\right) \cap \cdots \cap \mathcal{L}\left(e_{n}\right) \subseteq \mathcal{L}(e) \\
& \text { INTERSECT } \frac{\Gamma, x \in e}{\Gamma . x \in e_{1} \ldots x \in e_{n}} \\
& \text { if } n>1 \text { and } \\
& \mathcal{L}\left(e_{1}\right) \cap \cdots \cap \mathcal{L}\left(e_{n}\right)=\mathcal{L}(e) \\
& \text { FWd-Prop } \frac{\Gamma, x \in e, x=f\left(x_{1}, \ldots, x_{n}\right), x_{1} \in e_{1}, \ldots, x_{n} \in e_{n}}{\Gamma, x=f\left(x_{1}, \ldots, x_{n}\right), x_{1} \in e_{1}, \ldots, x_{n} \in e_{n}} \\
& \text { if } \mathcal{L}(e)=f\left(\mathcal{L}\left(e_{1}\right), \ldots, \mathcal{L}\left(e_{n}\right)\right) \\
& \text { Fwd-Prop-Elim } \frac{\Gamma, x \in e, x_{1} \in e_{1}, \ldots, x_{n} \in e_{n}}{\Gamma, x=f\left(x_{1}, \ldots, x_{n}\right), x_{1} \in e_{1}, \ldots, x_{n} \in e_{n}} \\
& \text { if } \begin{array}{l}
\mathcal{L}(e)=f\left(\mathcal{L}\left(e_{1}\right), \ldots, \mathcal{L}\left(e_{n}\right)\right) \\
\text { and }|\mathcal{L}(e)|=1
\end{array} \\
& \text { BWD-Prop } \frac{\left\{\Gamma, x \in e, x=f\left(x_{1}, \ldots, x_{n}\right), x_{1} \in e_{1}^{i}, \ldots, x_{n} \in e_{n}^{i}\right\}_{i=1}^{k}}{\Gamma, x \in e, x=f\left(x_{1}, \ldots, x_{n}\right)} \\
& \text { if } \quad \begin{array}{l}
f_{i=1}^{-1}(\mathcal{L}(e))= \\
\left.\bigcup_{i=1}^{k}\left(e_{1}^{i}\right) \times \cdots \times \mathcal{L}\left(e_{n}^{i}\right)\right)
\end{array}
\end{aligned}
$$

Forward Propagation

$$
\text { FWD-PRop } \frac{\Gamma, x \in e, x=f\left(x_{1}, \ldots, x_{n}\right), x_{1} \in e_{1}, \ldots, x_{n} \in e_{n}}{\Gamma, x=f\left(x_{1}, \ldots, x_{n}\right), x_{1} \in e_{1}, \ldots, x_{n} \in e_{n}} \quad \text { if } \mathcal{L}(e)=f\left(\mathcal{L}\left(e_{1}\right), \ldots, \mathcal{L}\left(e_{n}\right)\right)
$$

" "Image of regular languages is regular"

- Covers functions concat, transducers, etc.
- Over-approximate if argument variables not pairwise distinct
- Yields decision procedure for treeshaped constraints

String Solver CertiStr

- Verified solver for tree-shaped constraints, written in Isabelle/HOL
- The hardest part: implementation of symbolic automata

CertiStr: a certified string solver. Shuanglong Kan, Anthony Widjaja Lin,46 PR, Micha Schrader, CPP'22

Regular Constraint Prop.

$\notin \frac{\Gamma, x \in e^{c}}{\Gamma, x \notin e} \neq \frac{\Gamma, x \neq y, y=f\left(x_{1}, \ldots, x_{n}\right)}{\Gamma, x \neq f\left(x_{1}, \ldots, x_{n}\right)}$ where y is fresh Cut $\frac{\Gamma, x \in e \quad \Gamma, x \in e^{c}}{\Gamma}$
$=-\operatorname{Prop} \frac{\Gamma, x \in e, x=y, y \in e}{\Gamma, x \in e, x=y} \quad \neq-$ SubSUME$\frac{\Gamma, x \in e_{1}, y \in e_{2}}{\Gamma, x \in e_{1}, x \neq y, y \in e_{2}}$ if $\mathcal{L}\left(e_{1}\right) \cap \mathcal{L}\left(e_{2}\right)=\emptyset$
$=-$ Prop-Elim $\frac{\Gamma, x \in e, y \in e}{\Gamma, x \in e, x=y}$ if $|\mathcal{L}(e)|=1 \quad \neq-\operatorname{Prop}-E l i m \frac{\Gamma, x \in e, y \in e^{c}}{\Gamma, x \in e, x \neq y}$ if $|\mathcal{L}(e)|=1$

$$
\text { Close } \overline{\Gamma, x \in e_{1}, \ldots, x \in e_{n}}
$$

$$
\text { if } \mathcal{L}\left(e_{1}\right) \cap \cdots \cap \mathcal{L}\left(e_{n}\right)=\emptyset
$$

Subsume $\frac{\Gamma, x \in e_{1}, \ldots, x \in e_{n}}{\Gamma, x \in e, x \in e_{1}, \ldots, x \in e_{n}}$

$$
\text { if } \mathcal{L}\left(e_{1}\right) \cap \cdots \cap \mathcal{L}\left(e_{n}\right) \subseteq \mathcal{L}(e)
$$

$$
\operatorname{INTERSECT} \frac{\Gamma, x \in e}{\Gamma, x \in e_{1}, \ldots, x \in e_{n}}
$$

$$
\text { if } \quad \begin{aligned}
& n>1 \text { and } \\
& \mathcal{L}\left(e_{1}\right) \cap \cdots \cap \mathcal{L}\left(e_{n}\right)=\mathcal{L}(e)
\end{aligned}
$$

FWd-Prop $\frac{\Gamma, x \in e, x=f\left(x_{1}, \ldots, x_{n}\right), x_{1} \in e_{1}, \ldots, x_{n} \in e_{n}}{\Gamma, x=f\left(x_{1}, \ldots, x_{n}\right), x_{1} \in e_{1}, \ldots, x_{n} \in e_{n}} \quad$ if $\mathcal{L}(e)=f\left(\mathcal{L}\left(e_{1}\right), \ldots, \mathcal{L}\left(e_{n}\right)\right)$
Fwd-Prop-Elim $\frac{\Gamma, x \in e, x_{1} \in e_{1}, \ldots, x_{n} \in e_{n}}{\Gamma, x=f\left(x_{1}, \ldots, x_{n}\right), x_{1} \in e_{1}, \ldots, x_{n} \in e_{n}} \quad$ if $\quad \begin{aligned} & \mathcal{L}(e)=f\left(\mathcal{L}\left(e_{1}\right), \ldots, \mathcal{L}\left(e_{n}\right)\right) \\ & \text { and }|\mathcal{L}(e)|=1\end{aligned}$
BWD-Prop $\frac{\left\{\Gamma, x \in e, x=f\left(x_{1}, \ldots, x_{n}\right), x_{1} \in e_{1}^{i}, \ldots, x_{n} \in e_{n}^{i}\right\}_{i=1}^{k}}{\Gamma, x \in e, x=f\left(x_{1}, \ldots, x_{n}\right)}$
if f $f^{-1}(\mathcal{L}(e))=$
$\bigcup_{i=1}^{k}\left(\mathcal{L}\left(e_{1}^{i}\right) \times \cdots \times \mathcal{L}\left(e_{n}^{i}\right)\right)$

$$
\text { BWD-Prop } \frac{\left\{\Gamma, x \in e, x=f\left(x_{1}, \ldots, x_{n}\right), x_{1} \in e_{1}^{i}, \ldots, x_{n} \in e_{n}^{i}\right\}_{i=1}^{k}}{\Gamma, x \in e, x=f\left(x_{1}, \ldots, x_{n}\right)} \quad \text { if } \bigcup_{i=1}^{f^{-1}(\mathcal{L}(e))=}
$$

$\notin \frac{\Gamma, x \in e^{c}}{\Gamma, x \notin e} \neq \frac{\Gamma, x \neq y, y=f\left(x_{1}, \ldots, x_{n}\right)}{\Gamma, x \neq f\left(x_{1}, \ldots, x_{n}\right)}$ where y is fresh $\quad \operatorname{Cut} \frac{\Gamma, x \in e \quad \Gamma, x \in e^{c}}{\Gamma}$
$=-\operatorname{Prop} \frac{\Gamma, x \in e, x=y, y \in e}{\Gamma, x \in e, x=y} \quad \neq-$ SubSUME $\frac{\Gamma, x \in e_{1}, y \in e_{2}}{\Gamma, x \in e_{1}, x \neq y, y \in e_{2}}$ if $\mathcal{L}\left(e_{1}\right) \cap \mathcal{L}\left(e_{2}\right)=\emptyset$
$=-$ Prop-Elim $\frac{\Gamma, x \in e, y \in e}{\Gamma, x \in e, x=y}$ if $|\mathcal{L}(e)|=1 \quad \neq-\operatorname{Prop}-\operatorname{Elim} \frac{\Gamma, x \in e, y \in e^{c}}{\Gamma, x \in e, x \neq y}$ if $|\mathcal{L}(e)|=1$

$$
\operatorname{CLOSE} \overline{\Gamma, x \in e_{1}, \ldots, x \in e_{n}} \quad \text { if } \mathcal{L}\left(e_{1}\right) \cap \cdots \cap \mathcal{L}\left(e_{n}\right)=\emptyset
$$

$$
\text { SUBSUME } \frac{\Gamma, x \in e_{1}, \ldots, x \in e_{n}}{\Gamma, x \in e, x \in e_{1}, \ldots, x \in e_{n}}
$$

$$
\text { if } \mathcal{L}\left(e_{1}\right) \cap \cdots \cap \mathcal{L}\left(e_{n}\right) \subseteq \mathcal{L}(e)
$$

$$
\text { Intersect } \frac{\Gamma, x \in e}{\Gamma, x \in e_{1}, \ldots, x \in e_{n}}
$$

$$
\text { if } \begin{aligned}
& n>1 \text { and } \\
& \mathcal{L}\left(e_{1}\right) \cap \cdots \cap \mathcal{L}\left(e_{n}\right)=\mathcal{L}(e)
\end{aligned}
$$

FWD-Prop $\frac{\Gamma, x \in e, x=f\left(x_{1}, \ldots, x_{n}\right), x_{1} \in e_{1}, \ldots, x_{n} \in e_{n}}{\Gamma, x=f\left(x_{1}, \ldots, x_{n}\right), x_{1} \in e_{1}, \ldots, x_{n} \in e_{n}} \quad$ if $\mathcal{L}(e)=f\left(\mathcal{L}\left(e_{1}\right), \ldots, \mathcal{L}\left(e_{n}\right)\right)$
FWd-Prop-Elim $\frac{\Gamma, x \in e, x_{1} \in e_{1}, \ldots, x_{n} \in e_{n}}{\Gamma, x=f\left(x_{1}, \ldots, x_{n}\right), x_{1} \in e_{1}, \ldots, x_{n} \in e_{n}} \quad$ if $\begin{aligned} & \mathcal{L}(e)=f\left(\mathcal{L}\left(e_{1}\right), \ldots, \mathcal{L}\left(e_{n}\right)\right) \\ & \text { and }|\mathcal{L}(e)|=1\end{aligned}$
BWD-PROP $\frac{\left\{\Gamma, x \in e, x=f\left(x_{1}, \ldots, x_{n}\right), x_{1} \in e_{1}^{i}, \ldots, x_{n} \in e_{n}^{i}\right\}_{i=1}^{k}}{\Gamma, x \in e, x=f\left(x_{1}, \ldots, x_{n}\right)} \quad$ if $\quad \bigcup_{i=1}^{f^{-1}(\mathcal{L}(e))=}\left(\mathcal{L}\left(e_{1}^{i}\right) \times \cdots \times \mathcal{L}\left(e_{n}^{i}\right)\right)$

Backward Propagation

$$
\text { BWd-Prop } \frac{\left\{\Gamma, x \in e, x=f\left(x_{1}, \ldots, x_{n}\right), x_{1} \in e_{1}^{i}, \ldots, x_{n} \in e_{n}^{i}\right\}_{i=1}^{k}}{\Gamma, x \in e, x=f\left(x_{1}, \ldots, x_{n}\right)} \quad \text { if } \quad \begin{aligned}
& \bigcup_{i=1}^{-1}(\mathcal{L}(e))= \\
& \left.\mathcal{L}\left(e_{1}^{i}\right) \times \cdots \times \mathcal{L}\left(e_{n}^{i}\right)\right)
\end{aligned}
$$

- "Pre-image of regular language is a recognizable relation"
- More general than forward prop.:
- Also covers replace-all, etc.
- Also precise when arguments coincide
- Yields decision procedure for straightline constraints

Some Fragments

- Quadratic word equations
- Tree-shaped
- Acyclic
- Chainfree
- Straightline
- Cost-enriched straightline
- Weakly chaining

Some Fragments

- Quadratic word equations
- Tree-shaped
- Acyclic
- Chainfree
- Straightline

Forward + backward

- Cost-enriched straightline
- Weakly chaining

Some Fragments

- Quadratic word equations
- Tree-shaped
- Acyclic
- Chainfree
- Straightline

Nielsen + backward, propagate
cost-enriched regexes (aka Parikh automata)

Forward + backward

- Cost-enriched straightline
- Weakly chaining

Some Fragments

- Quadratic word equations
- Tree-shaped
- Acyclic
- Chainfree
- Straightline

Nielsen + backward, propagate
cost-enriched regexes (aka Parikh automata)

Forward + backward

- Cost-enriched straightline
- Weakly chaining

Some =racimonta

???

- Quadratic word equations
- Tree-shaped
- Acyclic
- Chainfree
- Straightline

Nielsen + backward, propagate
cost-enriched regexes (aka Parikh automata)

Forward + backward

- Cost-enriched straightline
- Weakly chaining

Where is the limit?

Conjecture:

- Nielsen + forward + backward + cut is incomplete for both quadratic and general word equations
$\notin \frac{\Gamma, x \in e^{c}}{\Gamma, x \notin e} \neq \frac{\Gamma, x \neq y, y=f\left(x_{1}, \ldots, x_{n}\right)}{\Gamma, x \neq f\left(x_{1}, \ldots, x_{n}\right)}$ where y is fresh \quad Cut $\frac{\Gamma, x \in e \quad \Gamma, x \in e^{c}}{\Gamma}$
$=-\operatorname{Prop} \frac{\Gamma, x \in e, x=y, y \in e}{\Gamma, x \in e, x=y} \quad \neq-$ SubSUME $\frac{\Gamma, x \in e_{1}, y \in e_{2}}{\Gamma, x \in e_{1}, x \neq y, y \in e_{2}}$ if $\mathcal{L}\left(e_{1}\right) \cap \mathcal{L}\left(e_{2}\right)=\emptyset$
$=-$ Prop-Elim $\frac{\Gamma, x \in e, y \in e}{\Gamma, x \in e, x=y}$ if $|\mathcal{L}(e)|=1 \quad \neq-\operatorname{Prop}-E l i m \frac{\Gamma, x \in e, y \in e^{c}}{\Gamma, x \in e, x \neq y}$ if $|\mathcal{L}(e)|=1$

$$
\operatorname{Close} \overline{\Gamma, x \in e_{1}, \ldots, x \in e_{n}}
$$

$$
\text { if } \mathcal{L}\left(e_{1}\right) \cap \cdots \cap \mathcal{L}\left(e_{n}\right)=\emptyset
$$

$$
\text { SUBSUME } \frac{\Gamma, x \in e_{1}, \ldots, x \in e_{n}}{\Gamma, x \in e, x \in e_{1}, \ldots, x \in e_{n}}
$$

$$
\text { if } \mathcal{L}\left(e_{1}\right) \cap \cdots \cap \mathcal{L}\left(e_{n}\right) \subseteq \mathcal{L}(e)
$$

$$
\text { Intersect } \frac{\Gamma, x \in e}{\Gamma, x \in e_{1}, \ldots, x \in e_{n}}
$$

$$
\text { if } \quad \begin{aligned}
& n>1 \text { and } \\
& \quad \mathcal{L}\left(e_{1}\right) \cap \cdots \cap \mathcal{L}\left(e_{n}\right)=\mathcal{L}(e)
\end{aligned}
$$

FWD-Prop $\frac{\Gamma, x \in e, x=f\left(x_{1}, \ldots, x_{n}\right), x_{1} \in e_{1}, \ldots, x_{n} \in e_{n}}{\Gamma, x=f\left(x_{1}, \ldots, x_{n}\right), x_{1} \in e_{1}, \ldots, x_{n} \in e_{n}} \quad$ if $\mathcal{L}(e)=f\left(\mathcal{L}\left(e_{1}\right), \ldots, \mathcal{L}\left(e_{n}\right)\right)$
FWd-Prop-Elim $\frac{\Gamma, x \in e, x_{1} \in e_{1}, \ldots, x_{n} \in e_{n}}{\Gamma, x=f\left(x_{1}, \ldots, x_{n}\right), x_{1} \in e_{1}, \ldots, x_{n} \in e_{n}} \quad$ if $\quad \begin{aligned} & \mathcal{L}(e)=f\left(\mathcal{L}\left(e_{1}\right), \ldots, \mathcal{L}\left(e_{n}\right)\right) \\ & \text { and }|\mathcal{L}(e)|=1\end{aligned}$
BWd-Prop $\frac{\left\{\Gamma, x \in e, x=f\left(x_{1}, \ldots, x_{n}\right), x_{1} \in e_{1}^{i}, \ldots, x_{n} \in e_{n}^{i}\right\}_{i=1}^{k}}{\Gamma, x \in e, x=f\left(x_{1}, \ldots, x_{n}\right)}$

$$
\text { if } f
$$

$$
\begin{aligned}
& f^{-1}(\mathcal{L}(e))= \\
& \bigcup_{i=1}^{k}\left(\mathcal{L}\left(e_{1}^{i}\right) \times \cdots \times \mathcal{L}\left(e_{n}^{i}\right)\right)
\end{aligned}
$$

$\operatorname{CuT} \frac{\Gamma, x \in e \quad \Gamma, x \in e^{c}}{\Gamma}$

$$
\notin \frac{\Gamma, x \in e^{c}}{\Gamma, x \notin e} \neq \frac{\Gamma, x \neq y, y=f\left(x_{1}, \ldots, x_{n}\right)}{\Gamma, x \neq f\left(x_{1}, \ldots, x_{n}\right)} \text { where } y \text { is fresh } \quad \text { CuT } \frac{\Gamma, x \in e \quad \Gamma, x \in e^{c}}{\Gamma}
$$

$$
=-\operatorname{PrOP} \frac{\Gamma, x \in e, x=y, y \in e}{\Gamma, x \in e, x=y} \quad \neq-\operatorname{SUBSUME} \frac{\Gamma, x \in e_{1}, y \in e_{2}}{\Gamma, x \in e_{1}, x \neq y, y \in e_{2}} \text { if } \mathcal{L}\left(e_{1}\right) \cap \mathcal{L}\left(e_{2}\right)=\emptyset
$$

$$
=-\operatorname{Prop}-E L I M \frac{\Gamma, x \in e, y \in e}{\Gamma, x \in e, x=y} \text { if }|\mathcal{L}(e)|=1 \quad \neq-\operatorname{Prop}-E L I M \frac{\Gamma, x \in e, y \in e^{c}}{\Gamma, x \in e, x \neq y} \text { if }|\mathcal{L}(e)|=1
$$

$$
\text { CLOSE } \frac{\Gamma, x \in e_{1}, \ldots, x \in e_{n}}{\Gamma} \quad \text { if } \mathcal{L}\left(e_{1}\right) \cap \cdots \cap \mathcal{L}\left(e_{n}\right)=\emptyset
$$

$$
\text { SUBSUME } \frac{\Gamma, x \in e_{1}, \ldots, x \in e_{n}}{\Gamma, x \in e, x \in e_{1}, \ldots, x \in e_{n}} \quad \text { if } \mathcal{L}\left(e_{1}\right) \cap \cdots \cap \mathcal{L}\left(e_{n}\right) \subseteq \mathcal{L}(e)
$$

$$
\text { INTERSECT } \frac{\Gamma, x \in e}{\Gamma, x \in e_{1}, \ldots, x \in e_{n}} \quad \quad \text { if } \quad \begin{aligned}
& n>1 \text { and } \\
& \mathcal{L}\left(e_{1}\right) \cap \cdots \cap \mathcal{L}\left(e_{n}\right)=\mathcal{L}(e)
\end{aligned}
$$

FWD-PROP $\frac{\Gamma, x \in e, x=f\left(x_{1}, \ldots, x_{n}\right), x_{1} \in e_{1}, \ldots, x_{n} \in e_{n}}{\Gamma, x=f\left(x_{1}, \ldots, x_{n}\right), x_{1} \in e_{1}, \ldots, x_{n} \in e_{n}} \quad$ if $\mathcal{L}(e)=f\left(\mathcal{L}\left(e_{1}\right), \ldots, \mathcal{L}\left(e_{n}\right)\right)$
FWD-Prop-ELIM $\frac{\Gamma, x \in e, x_{1} \in e_{1}, \ldots, x_{n} \in e_{n}}{\Gamma, x=f\left(x_{1}, \ldots, x_{n}\right), x_{1} \in e_{1}, \ldots, x_{n} \in e_{n}} \quad$ if $\quad \begin{aligned} & \mathcal{L}(e)=f\left(\mathcal{L}\left(e_{1}\right), \ldots, \mathcal{L}\left(e_{n}\right)\right) \\ & \text { and }|\mathcal{L}(e)|=1\end{aligned}$
$\operatorname{BWD}-\operatorname{PrOP} \frac{\left\{\Gamma, x \in e, x=f\left(x_{1}, \ldots, x_{n}\right), x_{1} \in e_{1}^{i}, \ldots, x_{n} \in e_{n}^{i}\right\}_{i=1}^{k}}{\Gamma, x \in e, x=f\left(x_{1}, \ldots, x_{n}\right)} \quad$ if $\quad \begin{aligned} & f_{i=1}^{-1}(\mathcal{L}(e))= \\ & \left.\bigcup_{i=1}^{k}\left(e_{1}^{i}\right) \times \cdots \times \mathcal{L}\left(e_{n}^{i}\right)\right)\end{aligned}$

The Next Steps

- Properties and generalization of regular constraint propagation
- What's decidable about strings constaints?
- From certified solver to proof checker: proof format for string solvers

For more details: see our POPL'24 tutorial https://eldarica.org/ostrich-popl24/

Towards Alethe-Style Proofs

```
(regular-languages
    (! (re.from_automaton "automaton {init s0; ...;") :id 1)
    (! (re.from_automaton "automaton {init s0; ...;") :id 2)
    (! (re.from_automaton "automaton {init s0; ...;") :id 3)
)
(assume h0 (str.in_re_id w 1))
(assume h1 (or (str.in_re_id w 2) (str.in_re_id w 3)))
(step t2 (cl (str.in_re_id w 2) (str.in_re_id w 3)) :rule or :premises (h1))
; start proof branch that spans until t3
(anchor :step t3)
(assume t3.h0 (str.in_re_id w 2))
(step t3.t1 (cl (not (str.in_re_id w 1)) (not (str.in_re_id w 2)))
    :rule re_empty_intersection)
(step t3.t2 (cl) :rule resolution :premises (h0 t3.h0 t3.t1))
(subproof t3 (cl (not (str.in_re_id w 2)))
(step t4 (cl (str.in_re_id w 3)) :rule resolution :premises (t2 t3))
(step t5 (cl (not (str.in_re_id w 1)) (not (str.in_re_id w 3)))
(step t6 (cl) :rule resolution :premises (h0 h2 t5))
```


Straightline Example

x in $a^{*} c^{*} b^{*}$
$y:=r e v e r s e(x)$
y in b*a*
$z:=$ replaceAll(y, a, b)
z in b^{*}

Is there an input x satisfying all assertions?

Straightline Example

x in $a^{*} c^{*} b^{*}$
$y:=r e v e r s e(x)$
y in $b^{*} a^{*}$
z := replaceAll(y, a, b)
z in b^{*}

Is there an input x satisfying all assertions?

Straightline Example

x in $a^{*} c^{*} b^{*}$
$y:=r e v e r s e(x)$
y in b*a*
y in (a | b)*

Is there an input x satisfying all assertions?

Straightline Example

x in $a^{*} c^{*} b^{*}$
$y:=\operatorname{reverse}(x)$
y in $b^{*} a^{*}$
$y \operatorname{in}(a \mid b)^{*}$
$\} y \operatorname{in}(a \mid b)^{*} \& b^{*} a^{*}$

Is there an input x satisfying all assertions?

Straightline Example

x in $a^{*} c^{*} b^{*}$
$y:=r e v e r s e(x)$
y in b*a*

Is there an input x satisfying all assertions?

Straightline Example

x in $a^{*} c^{*} b^{*}$
$y:=r e v e r s e(x)$
y in b*a*
$\} x$ in $a * b^{*}$

Is there an input x satisfying all assertions?

Straightline Example

x in $a^{*} c^{*} b^{*}$ x in a*b*

Is there an input x satisfying all assertions?

Straightline Example

x in $a^{*} c^{*}{ }^{*} *$
x in $a^{*} b^{*}$

$\} x$ in $a * b *$

Is there an input x satisfying all assertions?

Straightline Example

x in $a^{*} b^{*}$

Is there an input x satisfying all assertions?

Straightline Example

Easy to solve!

x in $a^{*} b^{*}$

Is there an input x satisfying all assertions?

Straightline Example

Easy to solve!

x in a*b*

Solution: $x=a b b$

