
1

Philipp Rümmer
University of Regensburg

Uppsala University

EPFL, 2024-06-15

Joint work with
Artur Jeż, Matt Hague, Anthony W. Lin, Oliver Markgraf, and others

On Regular Constraint
Propagation for Solving

String Constraints

 2

What are String Constraints?

Strings =
 finite sequences of letters over a finite

alphabet (e.g., Unicode)

String contraints =
 quantifier-free formulas over string

variables, including operations like:
 String concatenation (word equations)
 String length
 Substring, character access
 Regular expressions

3

Strings in Verification

4

Strings in Verification

ASCII, Unicode

5

Strings in Verification

Regular expression
assertion:

6

Strings in Verification

Word/string
concatenation

7

Strings in Verification

Loop invariant combining
word equations,
regex constraints,
length constraints

8

Strings in Verification

Substring
constraint

9

Strings in Verification

Or regex:

10

Strings in Verification

Presburger
length constraint

11

Strings in Verification

12

Strings in Verification

Main application area of string solving:
security analysis

 13

AWS: Access Policies

 14

Satisfiability Modulo Theories

 Many new SMT solvers for strings have
emerged in the last years

 SMT-LIB theory of strings
 SMT-COMP has a QF_Strings division

15

Some String Solvers

 Hampi
 Kaluza
 Stranger
 Gecode+S
 GStrings
 Z3
 Z3-str/2/3/4/alpha
 CVC4/cvc5
 Norn

 S3/p/#
 TRAU
 nfa2sat
 OSTRICH
 Z3-Noodler
 Woorpje
 BEK, REX
 SLOG, SLENT
 (many more)

17

What's Decidable about ...

Word Equations

18

What's Decidable about ...

Word Equations

This is already in
solved form

19

What's Decidable about ...

Word Equations

This is already in
solved form

In general, two main
decision procedures:

Makanin & Recompression

20

What's Decidable about ...

Word Equations

This is already in
solved form

✓

In general, two main
decision procedures:

Makanin & Recompression

21

What's Decidable about ...

Word Equations

✓

22

What's Decidable about ...

Word Equations

Regex
Constraints

✓

23

What's Decidable about ...

Word Equations

Regex
Constraints

✓

✓

24

What's Decidable about ...

Word Equations

Regex
Constraints

✓
Length

Constraints

✓

25

What's Decidable about ...

Word Equations

Regex
Constraints

✓
Length

Constraints

?

✓

26

What's Decidable about ...

Word Equations

Quadratic

Regex
Constraints

✓
Length

Constraints

?
?

✓

27

Transduction

What's Decidable about ...

Word Equations

Quadratic

Regex
Constraints

✓
Length

Constraints

?
?

✓

28

Transduction

What's Decidable about ...

Word Equations

Quadratic

Regex
Constraints

✓
Length

Constraints

?
?

Undecidable

✓

29

In Practice

Solvers use wide variety of techniques:
 Encoding as bit-vectors
 Encoding as SAT problem
 Rewriting/simplification rules
 Automata methods, derivatives
 Splitting rules for word equations
 (Re)Compression
 Propagation and CP methods
 etc.

30

Completeness

 Already for just word equations, decision
procedures are complicated and
impractical (not implementable?)

 String solvers are generally incomplete
(for proving word equations unsat)

31

Completeness

 Already for just word equations, decision
procedures are complicated and
impractical (not implementable?)

 String solvers are generally incomplete
(for proving word equations unsat)

 Simpler decision procedures exist for
various fragments (and are implemented
by some solvers)

32

Some Identified Fragments

 Quadratic word equations

 Tree-shaped
 Acyclic
 Chainfree
 Straightline
 Cost-enriched straightline
 Weakly chaining

33

Some Identified Fragments

 Quadratic word equations

 Tree-shaped
 Acyclic
 Chainfree
 Straightline
 Cost-enriched straightline
 Weakly chaining

Sometimes
complicated
definitions

Ad-hoc decision
procedures

Relationship
often unclear

34

Some Identified Fragments

 Quadratic word equations

 Tree-shaped
 Acyclic
 Chainfree
 Straightline
 Cost-enriched straightline
 Weakly chaining

Sometimes
complicated
definitions

Ad-hoc decision
procedures

Relationship
often unclear

Is it possible to unify definitions?

Possible to have a common proof format?

35

Our Working Hypothesis

(Most/many/some/...) decision procedures
can be understood as a combination of:
 Nielsen's transformation
 Propagation of regular constraints
 (Simplification rules)

36

Nielsen Transformation

37

Nielsen Transformation

38

Nielsen Transformation

39

Nielsen Transformation

In general, this style of reasoning does not
terminate. Most solvers split equations anyway.

40

Our Working Hypothesis

(Most/many/some/...) decision procedures
can be understood as a combination of:
 Nielsen's transformation
 Propagation of regular constraints
 (Simplification rules)

41

Constraint Normalization

String constraints can be rewritten to
Boolean combinations of:
 Equations
 Function applications
 Membership predicates
 (ignoring length)

becomes

42

Regular Constraint Prop.

S
tr

in
g

 C
o
n

s
tr

a
in

ts
 w

it
h

 R
e
a
l-

W
o
rl

d
 R

e
g

u
la

r
E
x
p

re
s
s
io

n
s
.

T
a
o
lu

e
 C

h
e
n
,
M

a
tt

h
e
w

 H
a
g

u
e
,
Z

h
ile

i
H

a
n
,

D
e
n

g
h
a
n
g
 H

u
,
A

le
ja

n
d

ro
 F

lo
re

s-
La

m
a
s,

A

n
th

o
n

y
 W

.
Li

n
,

S
h
u
a
n
g
lo

n
g
 K

a
n

,
P
R

,
Z

h
ili

n
 W

u
,

P
O

P
L'

2
2

43

Regular Constraint Prop.

S
tr

in
g

 C
o
n

s
tr

a
in

ts
 w

it
h

 R
e
a
l-

W
o
rl

d
 R

e
g

u
la

r
E
x
p

re
s
s
io

n
s
.

T
a
o
lu

e
 C

h
e
n
,
M

a
tt

h
e
w

 H
a
g

u
e
,
Z

h
ile

i
H

a
n
,

D
e
n

g
h
a
n
g
 H

u
,
A

le
ja

n
d

ro
 F

lo
re

s-
La

m
a
s,

A

n
th

o
n

y
 W

.
Li

n
,

S
h
u
a
n
g
lo

n
g
 K

a
n

,
P
R

,
Z

h
ili

n
 W

u
,

P
O

P
L'

2
2

44

Regular Constraint Prop.

S
tr

in
g

 C
o
n

s
tr

a
in

ts
 w

it
h

 R
e
a
l-

W
o
rl

d
 R

e
g

u
la

r
E
x
p

re
s
s
io

n
s
.

T
a
o
lu

e
 C

h
e
n
,
M

a
tt

h
e
w

 H
a
g

u
e
,
Z

h
ile

i
H

a
n
,

D
e
n

g
h
a
n
g
 H

u
,
A

le
ja

n
d

ro
 F

lo
re

s-
La

m
a
s,

A

n
th

o
n

y
 W

.
Li

n
,

S
h
u
a
n
g
lo

n
g
 K

a
n

,
P
R

,
Z

h
ili

n
 W

u
,

P
O

P
L'

2
2

45

Forward Propagation

 “Image of regular languages is regular”
 Covers functions concat, transducers, etc.
 Over-approximate if argument variables

not pairwise distinct
 Yields decision procedure for tree-

shaped constraints

46

String Solver CertiStr

CertiStr: a certified string solver. Shuanglong Kan, Anthony Widjaja Lin,
PR, Micha Schrader, CPP'22

 Verified solver for tree-shaped
constraints, written in Isabelle/HOL

 The hardest part: implementation of
symbolic automata

47

Regular Constraint Prop.

S
tr

in
g

 C
o
n

s
tr

a
in

ts
 w

it
h

 R
e
a
l-

W
o
rl

d
 R

e
g

u
la

r
E
x
p

re
s
s
io

n
s
.

T
a
o
lu

e
 C

h
e
n
,
M

a
tt

h
e
w

 H
a
g

u
e
,
Z

h
ile

i
H

a
n
,

D
e
n

g
h
a
n
g
 H

u
,
A

le
ja

n
d

ro
 F

lo
re

s-
La

m
a
s,

A

n
th

o
n

y
 W

.
Li

n
,

S
h
u
a
n
g
lo

n
g
 K

a
n

,
P
R

,
Z

h
ili

n
 W

u
,

P
O

P
L'

2
2

48

Regular Constraint Prop.

S
tr

in
g

 C
o
n

s
tr

a
in

ts
 w

it
h

 R
e
a
l-

W
o
rl

d
 R

e
g

u
la

r
E
x
p

re
s
s
io

n
s
.

T
a
o
lu

e
 C

h
e
n
,
M

a
tt

h
e
w

 H
a
g

u
e
,
Z

h
ile

i
H

a
n
,

D
e
n

g
h
a
n
g
 H

u
,
A

le
ja

n
d

ro
 F

lo
re

s-
La

m
a
s,

A

n
th

o
n

y
 W

.
Li

n
,

S
h
u
a
n
g
lo

n
g
 K

a
n

,
P
R

,
Z

h
ili

n
 W

u
,

P
O

P
L'

2
2

49

Backward Propagation

 “Pre-image of regular language is a
recognizable relation”

 More general than forward prop.:
 Also covers replace-all, etc.
 Also precise when arguments coincide

 Yields decision procedure for
straightline constraints

50

Some Fragments

 Quadratic word equations

 Tree-shaped
 Acyclic
 Chainfree
 Straightline
 Cost-enriched straightline
 Weakly chaining

51

Some Fragments

 Quadratic word equations

 Tree-shaped
 Acyclic
 Chainfree
 Straightline
 Cost-enriched straightline
 Weakly chaining

Forward + backward

52

Some Fragments

 Quadratic word equations

 Tree-shaped
 Acyclic
 Chainfree
 Straightline
 Cost-enriched straightline
 Weakly chaining

Forward + backward

Nielsen + backward,
propagate

cost-enriched regexes
(aka Parikh automata)

53

Some Fragments

 Quadratic word equations

 Tree-shaped
 Acyclic
 Chainfree
 Straightline
 Cost-enriched straightline
 Weakly chaining

Forward + backward

Nielsen + backward,
propagate

cost-enriched regexes
(aka Parikh automata)

???

54

Some Fragments

 Quadratic word equations

 Tree-shaped
 Acyclic
 Chainfree
 Straightline
 Cost-enriched straightline
 Weakly chaining

Forward + backward

Nielsen + backward,
propagate

cost-enriched regexes
(aka Parikh automata)

???

???

55

Where is the limit?

Conjecture:
 Nielsen + forward + backward + cut is

incomplete for both quadratic and
general word equations

56

S
tr

in
g

 C
o
n

s
tr

a
in

ts
 w

it
h

 R
e
a
l-

W
o
rl

d
 R

e
g

u
la

r
E
x
p

re
s
s
io

n
s
.

T
a
o
lu

e
 C

h
e
n
,
M

a
tt

h
e
w

 H
a
g

u
e
,
Z

h
ile

i
H

a
n
,

D
e
n

g
h
a
n
g
 H

u
,
A

le
ja

n
d

ro
 F

lo
re

s-
La

m
a
s,

A

n
th

o
n

y
 W

.
Li

n
,

S
h
u
a
n
g
lo

n
g
 K

a
n

,
P
R

,
Z

h
ili

n
 W

u
,

P
O

P
L'

2
2

57

S
tr

in
g

 C
o
n

s
tr

a
in

ts
 w

it
h

 R
e
a
l-

W
o
rl

d
 R

e
g

u
la

r
E
x
p

re
s
s
io

n
s
.

T
a
o
lu

e
 C

h
e
n
,
M

a
tt

h
e
w

 H
a
g

u
e
,
Z

h
ile

i
H

a
n
,

D
e
n

g
h
a
n
g
 H

u
,
A

le
ja

n
d

ro
 F

lo
re

s-
La

m
a
s,

A

n
th

o
n

y
 W

.
Li

n
,

S
h
u
a
n
g
lo

n
g
 K

a
n

,
P
R

,
Z

h
ili

n
 W

u
,

P
O

P
L'

2
2

58

The Next Steps

 Properties and generalization of
regular constraint propagation

 What's decidable about strings
constaints?

 From certified solver to proof checker:
proof format for string solvers

For more details: see our POPL'24 tutorial
https://eldarica.org/ostrich-popl24/

https://eldarica.org/ostrich-popl24/

59

Towards Alethe-Style Proofs
(regular-languages
 (! (re.from_automaton "automaton {init s0; ...;") :id 1)
 (! (re.from_automaton "automaton {init s0; ...;") :id 2)
 (! (re.from_automaton "automaton {init s0; ...;") :id 3)
)

(assume h0 (str.in_re_id w 1))
(assume h1 (or (str.in_re_id w 2) (str.in_re_id w 3)))
(step t2 (cl (str.in_re_id w 2) (str.in_re_id w 3)) :rule or :premises (h1))

; start proof branch that spans until t3
(anchor :step t3)
(assume t3.h0 (str.in_re_id w 2))

(step t3.t1 (cl (not (str.in_re_id w 1)) (not (str.in_re_id w 2)))
 :rule re_empty_intersection)
(step t3.t2 (cl) :rule resolution :premises (h0 t3.h0 t3.t1))

(subproof t3 (cl (not (str.in_re_id w 2)))

(step t4 (cl (str.in_re_id w 3)) :rule resolution :premises (t2 t3))

(step t5 (cl (not (str.in_re_id w 1)) (not (str.in_re_id w 3)))
 :rule re_empty_intersection)
(step t6 (cl) :rule resolution :premises (h0 h2 t5))

 60

y in b*a*

y := reverse(x)

Straightline Example

x in a*c*b*

z := replaceAll(y, a, b)

z in b*

Is there an input x satisfying all assertions?

 61

y in b*a*

y := reverse(x)

Straightline Example

x in a*c*b*

z := replaceAll(y, a, b)

z in b* } y in (a | b)*

Is there an input x satisfying all assertions?

 62

y in b*a*

y in (a | b)*

y := reverse(x)

Straightline Example

x in a*c*b*

Is there an input x satisfying all assertions?

 63

y in b*a*

y in (a | b)*

y := reverse(x)

Straightline Example

x in a*c*b*

} y in (a | b)* & b*a*

Is there an input x satisfying all assertions?

 64

y in b*a*

y := reverse(x)

Straightline Example

x in a*c*b*

Is there an input x satisfying all assertions?

 65

y in b*a*

y := reverse(x)

Straightline Example

x in a*c*b*

x in a*b*}

Is there an input x satisfying all assertions?

 66

x in a*b*

Straightline Example

x in a*c*b*

Is there an input x satisfying all assertions?

 67

x in a*b*

Straightline Example

x in a*c*b*

Is there an input x satisfying all assertions?

x in a*b*}

 68

Straightline Example

Is there an input x satisfying all assertions?

x in a*b*

 69

Straightline Example

Is there an input x satisfying all assertions?

Easy to solve!

x in a*b*

 70

Straightline Example

Is there an input x satisfying all assertions?

Easy to solve!

x in a*b*

Solution: x = abb

	Slide 1
	Slide 2
	page3 (1)
	page3 (2)
	page3 (3)
	page3 (4)
	page3 (5)
	page3 (6)
	page3 (7)
	page3 (8)
	page3 (9)
	page3 (10)
	Slide 13
	Slide 14
	Slide 15
	page8 (1)
	page8 (2)
	page8 (3)
	page8 (4)
	page8 (5)
	page8 (6)
	page8 (7)
	page8 (8)
	page8 (9)
	page8 (10)
	page8 (11)
	page8 (12)
	Slide 29
	page10 (1)
	page10 (2)
	page11 (1)
	page11 (2)
	page11 (3)
	Slide 35
	page13 (1)
	page13 (2)
	page13 (3)
	page13 (4)
	Slide 40
	Slide 41
	page16 (1)
	page16 (2)
	page16 (3)
	Slide 45
	Slide 46
	page19 (1)
	page19 (2)
	Slide 49
	page21 (1)
	page21 (2)
	page21 (3)
	page21 (4)
	page21 (5)
	Slide 55
	page23 (1)
	page23 (2)
	Slide 58
	Slide 59
	page26 (1)
	page26 (2)
	page26 (3)
	page26 (4)
	page26 (5)
	page26 (6)
	page26 (7)
	page26 (8)
	page26 (9)
	page26 (10)
	page26 (11)

