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Syntax-Guided Synthesis (SyGuS)

SyGuS is a problem of synthesising
• a function F within
• a theory τ that satisfies
• a semantic specification ϕ

• with a syntactic restriction G.

→ SyGuS-IF closely follows SMTLIB

SyGuS Tools/competitions



∃f . ∀xy.f (x, y) ≥ x ∧ f (x, y) ≥ y ∧ (f (x, y) = x ∨ f (x, y) = y)
f ∈ G

1 (set-logic LIA)

2 (synth-fun max2 ((x Int) (y Int)) Int

3 ((I Int) (B Bool))

4 ((I Int (x y 0 1 (+ I I) (- I I) (ite B I I)))

5 (B Bool ((and B B) (or B B) (not B)

6 (= I I) (<= I I) (>= I I)))))

7 (declare-var x Int)

8 (declare-var y Int)

9 (constraint (>= (max2 x y) x))

10 (constraint (>= (max2 x y) y))

11 (constraint (or (= x (max2 x y)) (= y (max2 x y))))

12 (check-synth)

1 (define-fun max2 ((x Int) (y Int)) Int (ite (>= x z) x z))



Enumerative Synthesis

In Syntax-Guided Synthesis:
Use grammar to systematically enumerate space of possible
programs
Counter-Example Guided Inductive Synthesis
(CEGIS)

Synthesiser Verifier
Success

Final program
Specification

Candidate pro-
gram

Feedback
Failure



AI in SyGuS

Many AI based approaches to Synthesis (and SyGuS):
• DeepCoder (Deep Learning for I/O examples)
• Neuro-Symbolic Program Synthesis (Neural Embedding

of I/O examples, R3NN syntheses a function from
Embedding)

• DreamCoder
• Flash Fill
• . . .

→ All based on I/O or PBE domains

Abstract Domains/Theories with logical specifications?



Enumerative Search as a Tree
Search

S → S + S | C
C → 1 | 2
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Reinforcement Learning and Data-Generation for
Syntax-Guided Synthesis
with Elizabeth Polgreen, AAAI 2024

• AlphaZero-style Monte-Carlo Tree Search
• train Value/Policy models to “evaluate” intermediate

nodes
• Value/Policy models trained in reinforcement learning



Guiding Enumerative Program Synthesis with LLMs
Yixuan Li, Julian Parsert, and Elizabeth Polgreen, CAV 2024



Synthesis with LLMs: Idea

Let’s ask (((((((hhhhhhhblockchains LLMs to solve ������XXXXXXeverything synthesis.

If the LLM fails, try again (×n where n = 6, trust me)

If it still fails?
Hypothesis:
Correct solutions “syntactically close” to LLM suggestions

Technique
• Use symbolic enumerator,
• to narrow synthesis search space
• by prioritising functions “near” LLM suggestions.
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Rule Weights, probabilistic CFG

Before diving into the specifics of our approach...

• a function F within
• a theory τ that satisfies
• a semantic specification ϕ

• with a syntactic restriction G.



Rule Weights

LLM-Generated program for the SyGuS example
(define-fun Prog((x1 Int) (x2 Int) (x3 Int)) Int

(ite (>= x1 x2) (ite (>= x1 x3) x1 x3) (ite (>= x2 x3) x2 x3)))

Rules appeared are:

Start → (ite StartBool Start Start)

Start → x1

Start → x2

Start → x3

StartBool → (>= Start Start)



Rule Weights
LLM-Generated program for the SyGuS example
(define-fun Prog((x1 Int) (x2 Int) (x3 Int)) Int

(ite (>= x1 x2) (ite (>= x1 x3) x1 x3) (ite (>= x2 x3) x2 x3)))

We calculate a weight for each rule as the number of times
that rule appears in the programs.

weight[Start → (ite StartBool Start Start)] = 3
weight[Start → x1] = 3
weight[Start → x2] = 3
weight[Start → x3] = 4
weight[StartBool → (>= Start Start)] = 3



pCFG

A context-free grammar with probabilities attached to the
rules.
The probability associated with a rule α → β

[Start → (ite StartBool Start Start)] 7→ 3/19
[Start → x1] 7→ 3/19
[Start → x2] 7→ 3/19
[Start → x3] 7→ 4/19
[StartBool → (>= Start Start)] 7→ 3/19



3 Synthesis Methods with LLMs

• Stand-alone LLM
• pCFG-synth (pCFG = probabilistic context-free grammar)
• iLLM-synth (iLLM = integrated Large Language Model)



Stand-alone LLM

• Tailored prompts assess LLM’s formal synthesis skills.
• Inspired by Chain-of-Thought: Prompt LLM, verify,

re-prompt if failed.

Up to 6 synthesis attempts per benchmark

LLM Verifier
SolutionPrompt

Candi-
date

Pro-
gram

Prompts



A SyGuS Example: the max3

Problem
A SyGuS specification that asks for a program
synthesizing the maximum of 3 inputs.
(set-logic LIA)

(synth-fun Prog ((x1 Int) (x2 Int) (x3 Int)) Int

((Start Int) (StartBool Bool) (Const Int)) (

(Start Int(

Const (- Start) (+ Start Start) (- Start Start)

(* Start Const) (ite StartBool Start Start) ...

x1 x2 x3))

(StartBool Bool(

(> Start Start) (= Start Start) (>= Start Start)

(and StartBool StartBool) (or StartBool StartBool)

(not StartBool) true ...))

(Const Int (0 1))))

(declare-var x1 Int)

(declare-var x2 Int)

(declare-var x3 Int)

(constraint (>= (Prog x1 x2 x3) x1))

(constraint (>= (Prog x1 x2 x3) x2))

(constraint (>= (Prog x1 x2 x3) x3))

(constraint (or (= x1 (Prog x1 x2 x3))

(or (= x2 (Prog x1 x2 x3)) (= x3 (Prog x1 x2 x3)))))

(check-synth)



How to Prompt the LLM
Prompt for SyGuS example
(set-logic LIA)

(declare-var x1 Int)

(declare-var x2 Int)

(declare-var x3 Int)

(constraint (>= (Prog x1 x2 x3) x1))

(constraint (>= (Prog x1 x2 x3) x2))

(constraint (>= (Prog x1 x2 x3) x3))

(constraint (or (= x1 (Prog x1 x2 x3)) (or (= x2 (Prog x1 x2 x3)) (= x3 (Prog x1 x2 x3)))))

(check-synth)

You are a good synthesizer. Do you know what "(define-fun Prog ((x1 Int) (x2 Int) (x3 Int)) Int" is doing?

Write only one Lisp-like method "defun Prog" without any built-in methods or arrays.

Requirements:

1. No built-in functions.

2. Never violate the SMT-LIB constraints above.

3. Pay attention to the define functions.

4. Ensure the response contains one and only one function.

5. Do not include any iterations, BitVec, or Int notations in the function body.

Write it correctly, or I will lose my job and 100 grandmothers will die. Don’t disappoint me.

Write only one Lisp-like method "defun Prog" that never violates the SMT-LIB constraints above.



How to Prompt the LLM
Response from LLM
(defun Prog (x1 x2 x3)

(ite (>= x1 x2) (ite (>= x1 x3) x1 x3) (ite (>= x2 x3) x2 x3)))

Request for converting Lisp to SMT-LIB code for the
last response
You are a good programming language converter. Convert the Lisp function to SMT-LIB:

Based on the Lisp code provided above, convert the ’defun’ Lisp-like code to a corresponding SMT-LIB function. Use SMT-

LIB syntax starting with (define-fun

Follow these guidelines:

1. Only give me the function definition starting with ’(define-fun’.

2. Pay attention to types. If there are bit-vector terms, they need to be of the same width.

3. Ensure the SMT-LIB function contains one and only one function definition starting with ’(define-fun’.

4. Do not include any iterations, BitVec, or Int notations in the function body.

5. Use the assigned values from the Lisp code during translation.

6. Do not introduce any variables that do not exist in the Lisp function.

Rules for SMT-LIB: +, -, *, ite, >, =, <, >=, <=, and, or, not, true, false.



How to Prompt the LLM

LLM-Generated program (Stand-alone LLM is done)

(define-fun Prog ((x1 Int) (x2 Int) (x3 Int)) Int

(ite (>= x1 x2) (ite (>= x1 x3) x1 x3) (ite (>= x2 x3) x2 x3)))

Prompt requesting a revised solution
You are close to the right answer. Take another guess. You have to try something different, think harder. Write a

different Lisp method that never violates the SMT-LIB constraints above again.



Stand-alone LLM

OpenAI’s GPT-3.5
• Solves 49% of benchmarks.
• 4 attempts on average for a correct solution.
• Average generation time: 5 seconds.



What to do after ��3 ��4 6 LLM attempts, are we lost?

Let’s apply hypothesis:
Correct solutions “syntactically close” to LLM suggestions:



pCFG-synth

• prompt LLM for solutions to the benchmark (as before)
• generate pCFG from LLM candidates.
• use enumerative synthesizer to enumerate according to

pCFG

LLM Verifier

Enumerator

SolutionPrompt

Grammar

Candidate
Program

Prompts

Rule
WeightsCandidate Program



LLM Verifier

Enumerator

SolutionPrompt

Grammar

Candidate
Program

Prompts

Rule
WeightsCandidate Program

But we gain information during enumeration phase
• Partial Programs
• Previous candiates
• CounterExamples (CEGIS)
• ...

Let’s use this information



iLLM-synth

• integrates LLM prompts for dynamic information use.
• LLM suggests helper functions for partial programs.
• Uses LLM responses to expand grammar’s production

rules and update rule weights.

Enumerator Verifier

LLM

SolutionGrammar

Candidate
Program

Counterexample

Partial Program
+Previous Solutions

+Counterexample
Helper

Function



How does iLLM-synth Work

Prompt for SyGuS example
You are teaching a student to write SMT-LIB. The student must write a function that satisfies the following constraints:

(constraint ...

...

So far, the student has written this code:

(define-fun Prog ((x1 Int) (x2 Int) (x3 Int)) Int

(ite ?? ?? ??)

Can you suggest some helper functions for the student to use to complete this code and replace the ??

You must print only the code and nothing else.

You are teaching a student to write SMT-LIB. The student may find the following functions useful:

(define-fun Prog ...

...

The student must write a function that satisfies the following constraints:

(constraint ...

...

The last solution the student tried was this, but the teacher marked this solution incorrect:

(define-fun Prog ...

This solution was incorrect because it did not work for the following inputs:

x3 = (- 3)

x2 = (- 2)

x1 = (- 4)



Weight Update

• we add helper function as a standalone rule (of
according type)

• we update all weights by considering the syntax of
helper function (as previously)



pCFG-synth

LLM Verifier

Enumerator

SolutionPrompt

Grammar

Candidate
Program

Prompts

Rule
Weights

Candidate
Program

iLLM-synth

Enumerator Verifier

LLM

SolutionGrammar

Candidate
Program

Counterexample
Partial Program

+Previous Solutions
+Counterexample

Helper
Function



Enumerators

Different search methods:
• Top-down enumerator.
• A∗ enumerator.



Top-down Enumerator

Top-down enumerator
• Uses probabilistic rule to navigate the grammar tree.
• Generates unique programs, discarding duplicates and

respecting a depth limit.
• Prioritizes new and complete programs to improve

search productivity.

+

Start Start

+

x1 Start

IP(x1)

+

x1 ×

Start Start

IP(x1) IP(×)



A∗ Enumerator

A∗ enumerator
• Chooses paths based on minimizing current path cost

plus estimated cost to goal.
• Focuses on paths with lower combined actual and

predicted costs.

+

Start Start

+

x1 Start

C(x1)

+

x1 ×

Start Start

C(x1) C(×)



Some Results (600s Timeout)

Effectiveness of various synthesis methods

0 20 40 60 80 100

80.1%

67.0%

49.8%

68.1%

pCFG-synth ∪ LLM

iLLM-synth

Stand-alone LLM

cvc5

• The average length of a solution: LLM is 4.7x than cvc5.



Summary of Results

Effectiveness of various enumerators

0 20 40 60 80 100

71.7%

80.1%

60.8%

67.0%

top-down pCFG-synth

A∗ pCFG-synth

top-down iLLM-synth

A∗ iLLM-synth

• A∗ > top-down.



Big Ugly Table

BV (384) LIA (87) INV (138) Total (609)
Methods # time(s) # time(s) # time(s) # %
LLM only 137 13.5 54 7.10 112 29.2 303 49.8%
e-pCFG-synth ⋄ 196.0 48.3 24.0 40.0 25.4 100.5 245.4 40.3%
A∗-pCFG-synth 262 60.1 35 72.7 25 99.7 322 52.9%
LLM ∪ e-pCFG-synth 255.0 37.0 64.0 17.20 117.7 40.4 436.7 71.7%
LLM ∪ A∗-pCFG-synth 305.0 35.0 65.0 18.1 118.0 33.6 488.0 80.1%
e-iLLM-synth ⋄ 241.0 88.2 63.4 9.3 65.3 25.4 370.0 60.8%
A∗-iLLM-synth ⋄ 272.3 24.6 68.3 20.8 67.3 43.6 408.0 67.0%
enumerator⋄ 142.7 7.2 25.0 1.53 21.0 3.2 188.7 31.0%
A∗ 253.0 25.4 34.0 73.19 22.0 31.1 309.0 50.7%
cvc5 292.0 17.1 43.0 19.53 80.0 23.6 415.0 68.1%



Failure of standalone LLM

• Constraints too long/complex
• simple syntactic errors (wrong place for operators)
• wrong nesting (e.g. if-then-else)
• ...

Neuro-symbolic approach can help with most problems.



Thank you

Feel free to contact me for questions, ideas, collaboration, ...
julian.parsert@gmail.com



Interests, Ideas, Etc.



Interests

Computer-Aided Verification is important!

I want to make it better, stronger, and easier for everyone to
use!

(Computational) logic/formal methods are just interesting
by themselves.



Research Ideas/Plans

From my thesis:
• Learning Non-Termination?
• (Un)decidable fragments of synthesis in SMT
• More complex predictors for MCTS

In general:
• Unrealizability: When/How can we prove that a function

cannot be synthesized? Following LPAR paper on
counter-models.

• Differentiable software monitoring
• Self-supervised learning on embeddings (to find

fragments?)
• ...



1. Choose a set of Terms

10 ∗ 1 = (2 ∗ 1) + 8
(1 ∗ 3) + 5 = 8

2. Anti-Unification on Terms

(2 ∗ 1) + 8 ⊔ (1 ∗ 3) + 5

⇝ (2 ∗ 1) ⊔ (1 ∗ 3) + 8 ⊔ 5
⇝ (2 ⊔ 1) ∗ (1 ⊔ 3) + w
⇝ u ∗ v + w

lgg u ∗ v + w with 3 new variables
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3. Replace terms with F(u, v,w)
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4. Unification of u ∗ v + w with terms for arguments
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= u ∗ v + w u 7→ 2, v 7→ 1,w 7→ 8

(1 ∗ 3) + 5 ?
= u ∗ v + w u 7→ 1, v 7→ 3,w 7→ 5

10 ∗ 1 = F(2, 1, 8)
F(1, 3, 8) = 8
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What is Second-Order
Unification?

F(g(b,g(a,a))){F 7→ λx.g(b,g(x, x))}) =
(λx.g(b,g(x, x)))g(b,g(a,a)) →β

g(b,g(g(b,g(a,a)),g(b,g(a,a))))

g(b,g(F(a), F(a))){F 7→ λx.g(b,g(x, x))}) =
g(b,g((λx.g(b,g(x, x)))a, (λx.g(b,g(x, x)))a)) →β

g(b,g(g(b,g(a,a)),g(b,g(a,a))))



Decidable fragments of
Second-Order (SO) Unification

• Monadic Second-Order Unification (W. Farmer, 1988).
Signature only contains monadic functions and
constants.

• Linear Second-Order Unification (J. Levy, 1996).
Substitutions may use the bound variables at most once
and Second-Order variables have arbitrary, fixed arity.

• Bounded Second-Order Unification (M.
Schmidt-Schauss, 2004). Substitutions may use the
bound variables at most a fixed number of times and
Second-Order variables have arbitrary, fixed arity.

• Context Unification (A. Jez, 2014). Substitutions may use
the bound variables precisely once and Second-Order
variables have arity 1.



Undecidability of Second-Order
(SO) Unification

• Undecidability of Higher-order unification (G. Huet,
1972). Reduction from Post Correspondence Problem.

• Undecidability of second-order unification (W. Goldfarb,
1981). Reduction from Hilbert’s 10th problem.

• Undecidability of second-order in the following cases
(W. Farmer, 1991). Reduction from Simultaneous Rigid
Reachability.

• Each SO variable occurs at most twice and there are only two
SO variables.

• One Unary SO variable.
• For some fixed n ≥ 0, (i) arguments of all SO variables are

ground terms of size < n, (ii) the arity of all SO variables is
< n, (iii) Occurances of SO variables ≤ 5, and (iv) there is
either a single unary SO variable or there are two SO variables
and no FO variables.



Undecidability of Second-Order
(SO) Unification

• Undecidability of Second-order unification in the
following case (H. Ganzinger et al., 1998). Reduction
from universal turing machine.

• One second-order variable and at least 8 first-order variables.
• Undecidability of Second-order unification in the

following cases (J. Levy and M. Veanes, 2000).
Reduction from Simultaneous Rigid Reachability.

• Two SO variables and no FO variables.
• One SO variable and only ground arguments.

No Further Generalization for 24 Years.

What’s Left??



Second-Order Ground Unification
• So far undecidability requires one of the following:

A) Multiple Second-order variables.
B) Occurances of first-order variables.

• We Ask the following:
Are first-order variables Important for undecidabil-
ity?

• we show that One SO variable and No FO variables is
enough for undecidability.

• Our reduction exploits Hilbert’s 10th problem, also
known as:

Theorem (Matiyasevich–Robinson–Davis–Putnam
theorem)
Given a polynomial p(x) with integer coefficients, finding
solutions in N to p(x) = 0 is undecidable.



Second-Order Ground Unification

Why is SOGU Interesting?

• Observe that such unification programs are closely
related to function synthesis task such as
A) Programming-By-Example (PBE)
B) Syntax-Guided Synthesis (SyGuS)

• Often the contraints for such tasks are Input-Output
examples using ground terms and a single function
variable.

• While uncommon, considering nested variables could
be of interest depending on the application domain.

• Additionally, it is often the case that a task requires
checking equavalence modulo ground constraints on
the solution.


	appendix

