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Overview

* Motivation: formalising maths, techniques vs theorems, the probabilistic method

e What we did:

i.  Combinatorial structure extensions
ii. A general framework: probabilistic spaces for combinatorial structures
iii.  Probability library extensions, including the Lovasz local lemma

iv. A sample application: Hypergraph Colourings

e What we learnt:

* Formalisation insights: modularity, locale techniques etc

* Mathematical insights: circular reasoning in human intuition



1. The Motivating Problem




The Probabilistic Method - Why Formalise?

The Probabilistic Method is one of the most powerful and widely used tools applied in

combinatorics (Alon & Spencer, 2015).

* Interest in formalised maths has grown significantly

* Only three pre-existing formalisations which use the probabilistic method in

combinatorics -> focused on theorems not general techniques.

* Predominance of method in modern combinatorics research motivated by applications

-> how can we make it easier to formalise future work?



What is the Probabilistic Method?

Basic
Probability

Key I d ea Tricks

Martin- Linearity of
gales Expectation

Given a probability space over
some combinatorial structure... Correlation

- Alterations
Inequalities

Show the structure has the

desired properties with positive —

Poisson
Paradigm

Moment
Method

probability.
(May be via complement)

Quasi- The Local
randomness Lemma

Alon & Spencer. (2004).
The Probabilistic Method.
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Hypergraph Colourings.

* A hypergraph (V, E), where E is a collection of subsets of V of any size, is “colourable” if
there is a vertex colouring such that no edge is monochromatic.

2- colourable 3-uniform w/ 4 edges Not 2- colourable 3-uniform w/ 7 edges



A Basic Proof

The Probabilistic Method:
Prove existence by showing a structure has a desired property with probability > 0

(or avoids bad properties with probability < 1)

Proposition 1.3.1 [Erdos (1963a)] Every n-uniform hypergraph with less than 27!
edges has property B. Therefore m(n) > 2" 1,

Proof. Let H = (V, E) be an n-uniform hypergraph with less than 2"~ ! edges.
Color V' randomly by two colors. For each edge e € E, let A. be the event that ¢ is
monochromatic. Clearly Pr[A.] = 2'~™. Therefore

\V} ﬂe] <) PriA] <1

ec B ec i

Pr

and there is a two-coloring without monochromatic edges. ]



Isabelle/HOL

* Simple type theory
e Automation: Sledgehammer

* Search tools: Query Search, Find Facts,

SErAPIS
* The Isar structured proof language
e IDE: JEdit & VSCodium

e Libraries: Distribution & Archive of

Formal Proofs (AFP)

* Additional features: Code generation,
modularity, polymorphism,

documentation generation ...

theorem assumes "prime p" shows "sqrt p ¢ Q"

proof
from <prime p> have p: "1 < p" by (simp add: prime_def)
assume "sqrt p € Q"
then obtain m n :: nat where
n: *n # 0" and sqrt_rat: "}sqrt p} =m / n"

and "coprime n r" by (rule Rats abs nat div natE)
have eq: "m? = p * n?"
proof -

from n and sqrt_rat have "m = }sqrt p} * n" by simp

then show "m2 = p * n?
by (mectis abs_of nat of nat eg iff of nat mult power2 ecq squarc rcal sqrt_abs2 rca

qed
have "p dvd m A p dvd n"
proof

from ec have "p dvd m?" ..
with <prime p- show "p dvd m" by (rule prime_dvd_power_nat)
then obtain k where "m = p *¥ k" ..
with ec have "p * n2 = p2 * k2" py (auto simp add:
with <prime p> show "p dvd n"

by (metis dvd_triv_le®t nat_mult_dvd_cancell power2_ec_square prime_dvd_power_nat

sledgehammer proofs

powerZ_eg_square ac simps)

qed
then have "p dvd gcd m n" by simp
with <coprime m n> have "p = 1" by simp

with p show False by simp

qed



2. Formally talking about Hypergraphes...




Hypergraph Structures

CHALLENGE 1

 Many combinatorial structures have the same underlying Hypergraphs
definition.

BUT

» Different languages/concepts/intuition

e Complex inheritance patterns Set Projective

Families Planes

* |nconsistencies in definitions

{0, 1, 2}, {0, 3, 4},
{0, 5, 6}, {1, 3, 5},
{1, 4,6}, {2, 3,6}, Designs

{2, 4, 5}

Design Rep
The Fano Plane



Locales Basics

* Locales are Isabelle’s module system. From a logical perspective, they are
simply persistent contexts.

* A simple example for combinatorics:

: : Notation
locale incidence system = L —
Parameters —| fixes point set :: "'a set" ("V") \
~ fixes block collection :: "'a set multiset" ("B")

///’ assumes wellformed: "b e# B =— b C V"

Assumptions



Locales Basics — Inheritance and Interpretations

 We have direct inheritance

locale hypersystem = incidence system "vertices :: 'a set" "edges :: 'a hyp edge multiset™
for "vertices" ("V") and "edges" ("E")

* And indirect inheritance (rewriting optional)

sublocale incidence system C hypersystém V B
rewrites "hdegree v = point replication number B v" and "hdegree set vs = points index B vs"

* Interpretations (global & local)

interpret h: hypergraph "hyp verts H" "hyp edges H"
using assms(3) by simp



Designs to Hypergraphs

Locales let us reuse lemmas, theorems, and definitions from prior

combinatorial structure formalisations

hypersystem +——— 5 incidence__system

l l

hypergraph < ? inf_design

- —
—— ——

e o ——

+ - B = . bl
fin__hypersystem < finite_incidence__system)

__________________ ~;.. ,
".r‘
-
_I‘rl‘
J—‘-.’

fin__hypergraph



2. A General Probabilistic Framework




A Basic Proof

The Probabilistic Method:
Prove existence by showing a structure has a desired property with probability > 0

(or avoids bad properties with probability < 1)

Proposition 1.3.1 [Erdos (1963a)] Every n-uniform hypergraph with less than 27!
edges has property B. Therefore m(n) > 2" 1,

Proof. Let H = (V, E) be an n-uniform hypergraph with less than 2"~ ! edges.
Color V' randomly by two colors. For each edge e € E, let A. be the event that ¢ is
monochromatic. Clearly Pr[A.] = 2'~™. Therefore

\V} ﬂe] <) PriA] <1

ec B ec i

Pr

and there is a two-coloring without monochromatic edges. ]



ldentified Formalisation Challenges

A first attempt at formalising a proof written in 1 line on paper!

proof -
R R .. e fix e assume a: "e € set_msetfjE"
Y R I then have "{f € C . edge is monochromatic2 f e} = (|J ce {0..<2} .{feC.Vvee.fv=chH"
e Ia n Ce O n u I I |a n I n u I IO n using edge is monochromatic_set union[of e 2] C_def by simp

also have "... = (|J ce {0::nat, 1} .{feC.Vvee.fv=c}H"
by fastforce

finally have eq: "{f € C . edge_is monochromatic2 f e} = {fe€ C . Vvee . fv=(0::nat)} U {f
by auto

have prob c: “A c. c € {0..<2} = P.prob {f € C . Vvee.fv=c}=1/(2 powi k)"

proof -
fix ¢ :: colour assume cin: "c € {0..<2}"
have ess: "e C V" using a wellformed by auto

L]
[ ] C | then have 1t: “card e < card V"
OI I I p eX Ca Cu a IO n S by (simp add: card _mono local.finite)
then have scard: "card {f e C . YVvee.fv=c}=(2:: real) powi ((card V) - card e)"
unfolding C_def using all_n_vertex colourings fun alt[of 2] card PiE filter range set[of ¢ 2
using cin by fastforce
have "P.prob {f e C . Vvee ., fv=c})=card {feC .V
using measure uniform_count measure[of C "{f € C . V v &
by fastforce
also have . (2 powi ((card V) - card e))/(2 powi (card V))" using Ccard scard by simp
° also have o 2 powi (int (card V - card e) - int (card V))" by (simp add: power_int diff)
[ ] Set u InVO Ived also have "... = 2 powi (int (card V) - int (card e) - int (card V))" using int ops 1t by simp
F:) also have "... 2 powi -(card e)" using assms(1l) by (simp add: of nat diff)
also have inverse (2 powi (k))" u51ng uniform a power_int minus[of 2 "(int k)"] by simp
finally show “P prob {f e C.Vvee. = c} = 1/(2 powi K)"
by (simp add: inverse eq divide)

. fv=c} (card C)"

VEE
e. fv=c} "] finC

nmunn

qed
have ss: "A ¢ .{f € C. Yvee. f v = ¢} € P.events"
by (simp add: sts)
have "A f . feC = - ((WVvee.fv=(0::nat)) A(Vvee.fvs=(l:i:nat)))"
proof (rule ccontr)

L] L L L]
* Definitions and notation

assume "- - ((Vvee. f v =0) A (Vvee. =1))"
then have con: "(YVvee. v=20)A (Vvee f v = 1)" by auto
then obtain v where "v € e" using blocks nempty a by auto
then show False using fin con by auto

qed

then have disj: "{f e C . Vvee.fv=(0:tpat)} N {feC.Vvee.fv=(li:nat)} = {}" b

then have "P.prob {f € C . edge_is _monochromatic2 f e} = P.prob ({f ¢ C . Vv ee . fv=(0::na
using eq by simp

also have "... = P.prob {f e C . Vvee.fv= (0::pat)} + P.prob {feC.Vvee.fv= (1
using P.finite _measure_Union[of "{f € C . Vv ee . fv=(0::nat)}" "{feC.Vvee.fvs

also have "... = 2/(2 powi (int k))" using prob_c by simp

also have "... = 2/(2* (2 powi ((int k) - 1)))" using assms(3)
by (metis power int_commutes power_int minus mult zero neq numeral)

finally show "P.prob {f € C . edge_is monochromatic2 f e} = 2 powi (1 - int k)"
by (simp add: power_int diff)

aed



ldentified Formalisation Challenges

A first attempt at formalising a proof written in 1 line on paper!

How can we: —
° fix e assume a: "e € set_msetfjE"

then have "{f € C . edge is monochromatic2 f e}
using edge is monochromatlc set_union[of e 2]

also have "... = (|J ce {0::nat, 1} .{fe C .V
by fastforce

finally have eq: "{f € C . edge is monochromatic2 f e} = {f e C . Yvee . fv=(0::nat)} U {f

=(Jce {0..<2} {feC.Vvee.fv=chH"
C_def by simp
vee.fv=c}H"

* Shorten the formal proof (mirroring S —————

have ess: "e a wellformed by auto
then have 1t:
by (simp add:

t | f then have scard:

n a u ra p ro O unfolding C_def us

using cin by fastfor

have "P.prob {f € C . V

using measure uniform cou

by fastforce

also have . (2 powi ((card

[ [J also have "... 2 powi (int (car

* Generalise techniques used ne B O
also have "... 2 powi -(card e)"

also have inverse (2 powi (k))"

finally show “P prob {f e C . Vve

by (simp add: inverse eq divide

.Yvee.fv=c}=(2::
rtex colourings fun alt[of

card V) - card e)"
~filter _range set[of ¢ 2

. fv=c} (card C)"
v =c} "] finC

V))" using Ccard scard by simp

d V))" by (simp add: power_int_diff)
int (card V))" using int_ops 1t by simp
(simp add: of nat diff)

a power_int minus[of 2 "(int k)"] by simp

n

qed

have ss: "A c .{f € C. Vvee.
O rl I la y by (simp add: sts)

have "A f . f € C = ~ (

proof (rule ccontr)
fix f assume fin: "f
assume "- - ((Vveg A (Yvee. f v =1))"
then have con: " = 0) A (Yvee. f v =1)" by auto
then obtain v e" using blocks nempty a by auto

* Avoid ‘hacking’ in future similar

then have disj: " C.Vvee.fTv=(0::pat)} n {f € C
then have "P.prob {f € C . edge_is monochromatic2 f e} = P.prob ({f
using eq by simp

= (0::pat)) A = (1l::pat)))"

5 = (l::pat)} = {}" b
- .Yvee.fv=(0::na

also have "... = P.prob {f e C . Vvee.fv= (0::pat)} + P.prob {feC.Vvee.fv= (1
using P.finite _measure_Union[of "{f € C . Vv ee . fv=(0::nat)}" "{feC.Vvee.fvs
p roo S also have "... = 2/(2 powi (int k))" using prob_c by simp
also have "... = 2/(2* (2 powi ((int k) - 1)))" using assms(3)

by (metis power int_commutes power_int _minus_mult zero_ neq_numeral)
finally show "P.prob {f € C . edge_is monochromatic2 f e} = 2 powi (1 - int k)"
by (simp add: power_int diff)
aed



The
Basic
Method

Introduce randomness to the
problem domain

|dentify the desired
properties/properties to avoid

Show object has desired
properties with P >0

In a finite space, there must
then be an element of the
space with the property!




Goal: Prove that every k-uniform hypergraph
with fewer than 27k-1 edges is 2-colourable

1. Colour a graph with 2 colours
randomly

g V
I o 2. Property: colouring results in no
Ap p yl ng edges being monochromatic.

3. Show the complement:

t h e probability of all edges being
monochromatic< 1

M th d 4. P(A)=1-(-A). Positive
e O probability, and exemplar

colouring can be obtained.




Formalisation Framework - Summary

Formal Framework
1. Define a probability space
2. Define object properties
3. Calculate probability bounds

4. Obtain exemplar object

Traditional Framework

Introduce randomness to the
Problem Domain

|dentify the desired
properties/properties to avoid

Show object has desired
properties with P >0

In a finite space, there must
then be an element of the
space with the property!




The Formalisation Framework — Step 1

To “introduce randomness” we must define a probability space

Define the
measure

Definethe __,
prob space

Useful
lemmas

(Q,F, P) formally

__,[define C where "C = (all_n vertex colourings fun 2)"
 let ?M = "uniform count measure C"

"interpret P: prob space ?M
using assms(1l) by (intro prob space uniform count measure)(simp all add: C def vertex

have

by
have
have
have

have

sp: "space M = C"

(simp add: space uniform count measure)

sts: "P.events = Pow C" by (simp add: sets uniform count measure)

finE: "finite (set mset E)" by simp

finC: "finite C" using vertex colourings fun fin C def by simp

Ccard: "card C = 2 powi (card V)" using count vertex colourings fun C def by auto

Can we generalise?




The Formalisation Framework — Step 1

To “introduce randomness” we must define a probability space

Define the
measure

Definethe __,
prob space

Useful
lemmas

(Q,F, P) formally

Local definitions?

__,[define C where "C = (all_n vertex colourings fun 2)"
 let ?M = "uniform count measure C"

"interpret P: prob space ?M
using assms(1l) by (intro prob space uniform count measure)(simp all add: C def vertex

have

by
have
have
have

have

sp: "space M = C"

(simp add: space uniform count measure)

sts: "P.events = Pow C" by (simp add: sets uniform count measure)

finE: "finite (set mset E)" by simp

finC: "finite C" using vertex colourings fun fin C def by simp

Ccard: "card C = 2 powi (card V)" using count vertex colourings fun C def by auto

Can we generalise?




The Formalisation Framework — Step 1 General!

locale vertex fn space uniform =
fixes F :: "'a set = 'b set"
assumes ne: "F V # {}"

fin hypersystem vne +

Sublocale . .
. . prob_space a?sumes fin: "finite (F V)
relatlonshlp\ . begin
: definition"QU = F V">
Parameter
: verter_fn_space €=U definition "MU — unif - I
rewrites \\\\\\‘ _Jn_ ‘ M= MU efinition = uniform count measure ¢
Q=y .- JRRRE
o vertex_fn_space_uniform
QU =V =g P
ol U=y v
vertex_space vertex_space_uniform vertex_prop_space
Q-Vs! QU = VS o
~ ~ ~ locale vertex colour space = fin_hypergraph nt +
fixes n :: nat (*Number of colours *)

vertexr_ss_space

vertexr_ss_space_uniform

vertem_ﬁxdour_space - : .
n < horder

||n T‘_ BII

assumes n_1lt order:
assumes n_not_zero:

sublocale vertex colour space C vertex prop space V E "{0.
rewrites "QU = Cin"

.<n}"



Application: A Vertex Colouring Space Example

locale vertex colour space = fin hypergraph nt +
fixes n :: nat (*Number of colours *)
assumes n_lt order: "n < order"
assumes n _not zero: "n # 0"

sublocale vertex colour space C vertex prop space V E "{0..<n}"
rewrites "QU = Cn"
proof -
have "{0..<n} # {}" using n not zero by simp
then interpret vertex prop space V E "{0..<n}"
by (unfold locales) (simp all)

show "vertex prop space V E {0..<n}" by (unfold locales)
show "QU = C""

using 2 def all n vertex colourings alt by auto
ged



Application: A Vertex Colouring Space Example

locale vertex colour space = fin hypergraph nt +
fixes n :: nat (*Number of colours *)
assumes n_lt order: "n < order"
assumes n _not zero: "n # 0"

sublocale vertex colour space C vertex prop space V E "{0..<n}"
rewrites "QU = Cn"
proof -
have "{0..<n} # {}" using n not zero by simp
then interpret vertex prop space V E "{0..<n}"
by (unfold locales) (simp all)
show "vertex prop space V E {0..<n}" by (unfold locales)
show "QU = C""
using 2 def all n vertex colourings alt by auto
ged

Locale context contains general lemmas on vertex colourings for any future applications of
the probabilistic method to colourings!



The Formalisation Framework — Step 3

* The Union bound:

lemma Union bound avoid:
assumes "finite A"
assumes "() a € A. prob a) < 1" =
assumes "A C events" libraries
shows "prob (space M - [JA) > 0"

Lemma “lifted” from measure theory

* The Complete Independence Bound

lemma complete indep bound3:
assumes "finite A"

assumes "A # {}" New formalisation which uses

n b C n .
assumes ‘F A C events® measure theory basics.
assumes "indep events F A

assumes "\ a . a € A = prob (F a) < 1"
shows "prob ([lJa € A. space M - F a) > 0"



The Formalisation Framework — Step 4

* Obtaining an object from a probability!
* Some basic rules

lemma prob 1t one obtain:
assumes "{e € space M . Q e} € events"
assumes "prob {e € space M . Q e} < 1"
obtains e where "e € space M" and "—- Q e"

lemma prob gt zero obtain:
assumes "{e € space M . Q e} € events"
assumes "prob {e € space M . Q e} > 0"
obtains e where "e € space M" and "Q e"

* Combining steps 3 & 4!

lemma Union bound obtain fun:
assumes "finite A"
assumes "(>.a € A. prob (f a)) < 1"
assumes "f ° A C events"
obtains e where "e € space M" and "e ¢ |J( f° A)"




3. More Probability Extensions
(The Lovasz Local Lemma (LLL))




LLL Background — Step 3

Given a set of bad events: A = {4, 4,, ..., A,,}, toavoid P(N"-,4;) > 0

Lovasz Local Lemma Complete Independence
(Mutual Independence) Bound

All A; are independent

N[i] = set of events A4; is

mutually independent of




LLL Background — Step 3

Given a set of bad events: A = {4, 4,, ..., A,,}, toavoid P(N"-,4;) > 0

Lovasz Local Lemma Complete Independence
(Mutual Independence) Bound

All A; are independent

N[i] = set of events A4; is

mutually independent of

An event A is mutually independent of asetSif forany T C S,
P(A) =P(A|T)



LLL Formal Theorem Statement — Step 3

Lemma 5.1.1 [The Local Lemma; General Case] Ler Ay, Ay, ..., A, be events
in an arbitrary probability space. A directed graph D = (V. E) on the set of
vertices V' = {1,2,...,n} is called a dependency digraph for the events Ay, ..., Ay
if for each i, 1 < i < n, the event A; is mutually independent of all the events
{A; : (i,7) & E}. Suppose that D = (V, E) is a dependency digraph for the above
events and suppose there are real numbers 1, ...,x, such that ) < z; < 1 and
PriA;| < @[] jyep(l —zj) forall1 <1 < n. Then

Pr [;\ﬁ:} > fl(l —x;).

i=1

In particular, with positive probability no event A; holds.

theorem lovasz local general:
assumes "A # {}"
assumes "F ° A T events"
assumes "finite A"
assumes "N AL . Al € A= fTALI =0 A fAl < 1"
assumes "dependency digraph G M F"
assumes "N Ai. A1 € A — (prob (F A1) =< (f Ai) * (]] Aj € pre_digraph.neighborhood G Ai. (1 - (f Aj))))"
assumes "pverts G = A"
shows "prob ([ Ai € . (space M - (FAL))) = ([TAi A . (1 - fAL))" "(J[IALicA . (1 - fAL)) > 0"



LLL Formal Theorem Statement — Step 3

Lemma 5.1.1 [The Local Lemma; General Case] Ler Ay, Ay, .... A, be events A1
in an arbitrary probability space. A directed graph D = (V. E) on the set of
vertices V' = {1,2,...,n} is called a dependency digraph for the events Ay, ..., Ay

if for each i, 1 < i < n, the event A; is mutually independent of all the events
{A; : (i,7) & E}. Suppose that D = (V, E) is a dependency digraph for the above A2
events and suppose there are real numbers x1,....x, such that 0 < x; < 1 and A3
PriA;| < o], jyep(l —xj) forall1 <1 < n. Then Ad

Pr [;\ﬁ:} > fl(l —z;). €1

i=1

In particular, with positive probability no event A; holds. C2

theorem lovasz local general:
assumes “"A # {}"
assumes "F ° A C events" Al
assumes "finite A"
assumes "N AL . Al € A= T AL =0 A T Al < l“}As
assumes "dependency digraph G M F“}Az
assumes "N Ai. A1 € A — (prob (F A1) =< (f Ai) * (]J] Aj ¢ pre_digraph.neighborhood G Ai. (1 - (f Aj]}}]“}M
assumes "pverts G = } A2
shows "prob (] A1 € A (space M - (F A1))) = (J] AL € A . (1 - f AL))" “(JI AL A . (1 - f AL)) > @"

C1 Cc2



LLL Paper Proof Sketch — Step 3

LLL Helper
(Base Step)

General LLL - General LLL
(Dep Graph) (Mutual Event Set)




LLL Paper Proof Sketch — Step 3

LLL Helper General LLL Symmetric LLL
(Base Step) (Dep Graph) (Mutual Event Set)
A
Proof. We first prove, by induction on s, that for any S C {1,...,n}, S| =s < n, 1{j : (i,j) € E}| < d. The result now follows from Lemma 5.1.1 by taking
and any i ¢ S, x; = 1/(d + 1) (< 1) for all i and using the fact that for any d > 1,
PriAi| N4;| <ai. 6.1 (1——1 )d::'l
i€s d+1 e’

The assertion of Lemma 5.1.1 now follows easily, as

Pr [;\I} = (I_PT[AI.I)‘(I—PF[AQ ‘m)

n—1 n
(1 —Pr[nn\ /\Z—D >0 -2,
=1

i=1

completing the proof.



LLL Formal Proof Sketch — Step 3

UNIV Set issue Hidden

Induction
Proof

General LLL

LLL Helper

(Base Step) (Dep Graph)

Obtain
set from
graph

Induction Proof

LLL Helper Symmetric LLL

(Inductive Step) (Dep Graph)

Dependency Probability

Graph Library
Extensions Extensions

General LLL
(Mutual Event Set)

Symmetric LLL
(Mutual Event Set)




LLL Symmetric — Step 3

Corollary 5.1.2 [The Local Lemma; Symmetric Case] Let A, Ay, ..., A, be
events in an arbitrary probability space. Suppose that each event A; is mutually
independent of a set of all the other events A; but at most d, and that Pr [A;] < p for
alll <i<n lf

ep(d+1) <1 (5.5)

then Pr [\, A;] > 0.

theorem lovasz local symmetric:
fixes d :: nat
assumes "A # {}"
assumes "F ° A C events"
assumes "finite A"
assumes "A Ai. Ai e A— (3 S .S CA - {Ai} A card S > card A - d - 1 A mutual indep events (F Ai) F S)"
assumes "A Ai. Ai € A — prob (F Ai) < p"
assumes "exp(l)* p * (d + 1) < 1"
shows "prob ([) Ai € A . (space M - (F Ai))) > o"
proof -
obtain G where odg: "dependency digraph G M F" "pverts G = A" "A Ai. Al € A — out degree G A1 < d"
using assms obtain dependency graph by metis
then show ?thesis using odg assms lovasz local symmetric dep graph[of A F G d p] by auto
qged




5. Applications




Application: Defining Hypergraph Colourings

abbreviation vertex colouring :: "('a = colour) = nat = bool" where
"vertex colouring f n=f € V —g {0..<n}"

definition mono edge :: "('a — colour) = 'a hyp edge = bool" where
"“mono edge f e = dc. Vvee fv=c"

definition is proper colouring :: "('a = colour) = nat = bool" where

| "1s_proper_colouring f n = vertex_colouring f n A (Ve e# E. ¥ c € {0..<n}. f

Te # {c})

[ definition ESUAICOLOUFrablE :: "nat = bool" where

"is n colourable n = 3 f . 1is proper _colouring f n"

definition all n vertex colourings :: "nat = ('a = colour) set" where
"all n vertex colourings n = {f . vertex colouring f n}"

notation all n vertex colourings ("(Ct )" [502] 500)

abbreviation (in hypergraph) has property B ::

“bool" where
"has property B = is n colourable 2"




Application: A Vertex Colouring Space Example

locale vertex colour space = fin hypergraph nt +
fixes n :: nat (*Number of colours *)
assumes n_lt order: "n < order"
assumes n _not zero: "n # 0"

sublocale vertex colour space C vertex prop space V E "{0..<n}"
rewrites "QU = Cn"
proof -
have "{0..<n} # {}" using n not zero by simp
then interpret vertex prop space V E "{0..<n}"
by (unfold locales) (simp all)
show "vertex prop space V E {0..<n}" by (unfold locales)
show "QU = C""
using 2 def all n vertex colourings alt by auto
ged

Locale contexts contain general lemmas on useful probability calculations for
vertex colourings



Application: The basic method

Proposition 1.3.1 [Erdos (1963a)] Every n-uniform hypergraph with less than 27!
edges has property B. Therefore m(n) > 2" 1.

Proof. Let H = (V, E) be an n-uniform hypergraph with less than 2"~! edges.
Color V' randomly by two colors. For each edge e € E, let A, be the event that ¢ is
monochromatic. Clearly Pr[A.] = 2!~ Therefore

Pr|\/ Al <> PriA]<1

ecFE ecll

and there is a two-coloring without monochromatic edges. ]

context fin kuniform hypergraph nt
begin
proposition erdos propertyB:
assumes "size E < (2°(k - 1))"
assumes "k > 0"
shows "has property B"
proof -
(* (1) Set up the probability space: "Colour V randomly with two colours" *)
interpret P: vertex colour space V E 2
by unfold locales (auto simp add: order ge two)
(* (2) define the event to avoid - monochromatic edges *)
define A where "A =(\ e. {f € C2 . mono _edge f e})"
(* (3) Calculation 1: Clearly Pr[Ae] = 27(1- n). *)
have pe: "A e. e € set mset E — P.pfiob {f € C2 . mono edge f e} = 2 powi (1 - int k)"
using P.prob monochromatic edge uniform assms(1l) by fastforce
(* (3) Calculation 2: Have Pr (of Ae for any e) < Sum over e (Pr (A e)) <1 *)
have "(> e € set mset E. P.prob (A e)) < 1"
proof -
have "int k - 1 = int (k - 1)" using assms by linarith
then have "card (set mset E) < 2 powi (int k - 1)" using card size set mset[of E] assms by simp
then have "(D>_ e € (set mset E). P.prob (A e)) < 2 powi (int k - 1) * 2 powi (1 - int k)"
unfolding A def using pe by simp
moreover have "((2 :: real) powi ((int k) - 1)) * (2 powi (1 - (int k))) = 1"
using power_int add[of 2 "int k - 1" "1- int k"] by force
ultimately show ?thesis using power int add[of 2 "int k - 1" "1- int k"] by simp
ged
moreover have "A ° (set _mset E) C P.events" unfolding A def P.sets _eq by blast
(* (4) obtain a colouring avoiding bad events *)
ultimately obtain f where "f € C2" and "f &€ |J(A ~(set mset E))"
using P.Union bound obtain fun[of "set mset E" A] finite set mset P.space eq by auto
thus ?thesis using event is proper colouring A def is n colourable def by auto

ged



Application: the basic method

context fin kuniform hypergraph nt
begin
proposition erdos propertyB:
assumes "size E < (2°(k - 1))"
assumes "k > 0"
shows "has property B"
proof -
* (1) Set up the probability space: "Colour V randomly with two colours" *)
interpret P: vertex colour space V E 2
by unfold locales (auto simp add: order ge two)
* (2) define the event to avoid - monochromatic edges *)
Proof. Let H = (V, E) be an n-unifo raph with less than 2" ! edges. /V *d?;ng i\ W?ié;é "Alz(chl e. 1{f - [iz ; mozno(ledge) f *6)})"
— - alculation 1: early Pr[Ae] = 27(1- n).
ColorVrand(?m]y by two colorm;fach edge e € E, let A, be the event that e is have pe: TR R A G
monochromatic. Clearly Pr[A.] = 2" ~". Therefore { using P.prob monochromatic edge uniform assms(1) by fastforce
(* (3) Calculation 2: Have Pr (of Ae for any e) < Sum over e (Pr (A e)) <1 *)

[ have "(>Je € set mset E. P.prob (A e)) < 1"
Pr V A < Z Pr[Ad.] <1 proof -

Proposition 1.3.1 [Erdos (1963a)] Every n-uniform hypergraph with less than 27!
edges has property B. Therefore m(n) > 2" 1.

eCE ceE have "int k - 1 = int (k - 1)" using assms by linarith
then have "card (set mset E) < 2 powi (int k - 1)" using card size set mset[of E] assms by simp
. . . . R . | then have "(D>_ e € (set mset E). P.prob (A e)) < 2 powi (int k - 1) * 2 powi (1 - int k)"
and there is a two-coloring without monochromatic edges. ] unfolding A def using pe by simp

moreover have "((2 :: real) powi ((int k) - 1)) * (2 powi (1 - (int k))) = 1"
using power_int add[of 2 "int k - 1" "1- int k"] by force

ultimately show ?thesis using power int add[of 2 "int k - 1" "1- int k"] by simp

L qed

moreover have "A ° (set _mset E) C P.events" unfolding A def P.sets _eq by blast

(* (4) obtain a colouring avoiding bad events *)

[ ultimately obtain f where "f € (2" and "f ¢ |J(A " (set mset E))"

using P.Union bound obtain fun[of "set mset E" A] finite set mset P.space eq by auto

| thus ?thesis using event is proper colouring A def is n colourable def by auto
ged




Application: A more advanced bound

n-uniform hypergraph

Proposition 1.3.1 [Erdos (1963a)] Every n-uniform hypergraph with less than 27!
edges has property B. Therefore m(n) > 2" 1.

Proof. Let H = (V, E) be an n-uniform hypergraph with less than 2"~! edges.
Color V' randomly by two colors. For each edge e € E, let A, be the event that e is
monochromatic. Clearly Pr[A.] = 2"~ Therefore

V A

ecE

Pr < Z Pr{A.] <1

ecly

and there is a two-coloring without monochromatic edges. ]

Union Bound

v

Hypergraph w/ edge conditions

Theorem 5.2.1 Let H = (V, E) be a hypergraph in which every edge has at least
k elements, and suppose that each edge of H intersects at most d other edges. If
e(d + 1) < 281 then H has property B.

Proof. Color each vertex v of H, randomly and independently, either blue or red (with
equal probability). Foreachedge f € E, let A be the event that f is monochromatic.
Clearly Pr[A;] = 2/2If1 < 1/2%=1. Moreover, each event A; is clearly mutually
independent of all the other events A for all edges f' that do not intersect f. The
result now follows from Corollary 5.1.2. n

\

Lovasz Local Lemma

More advanced, but smaller proof?



Application: A more advanced bound

proposition erdos_propertyB_LLL:
assumes "M e. e c#E — card e = k"
assumes "N\ e . e =#E — size {# T =# (E - {#e#}) . f ne # {}#} < d"
assumes "exp(l})*(d+1) = (2 powi (k - 1})"
assumes "k = 8"
shows "has_property B"
proof -
— < 1 set up probability space »
interpret P: vertex colour space V E 2 (* Reuse s=t up *)
by unfold locales (aute simp add: order_ge_two)
let 2N = "{0..=size E}"
obtain id where ideq: "image_mset id (mset_set ?N) = E" and idin: "id € ?N —¢ set_mset E"
. . using obtain_function_on_ext_funcset[of "?N" E] by auto
Theorem 5.2.1 Let H = (V, E) be a hypergraph in which every edge has at least then have iedge: *A\i. i € 2N — id i =% E* by auto
k elements, and suppose that each edge of H intersects at most d other edges. If — <2 define event -
k—1 define Ae where "Ac = X 1. {f € C+2 . mono_edge f (id 1)}"
e(d + 1} <2 then H has properiy B. — < (3} Prove each event A is mutually independent of all other mono events for other
edges that don't intersect.
have "® =< P.prob ([JA1=?N. space P.MU - Ae A1}"

Proof. Coloreach vertex v of H, randomly and independently, either blue or red (with proof (intro P.lovasz_local_symmetric[of ?N Ae d "(1/(2 powi (k-1)))"1}
TH ; : have mis: "Ai . 1 € ?N — P.mutual_indep_events (Ae 1) Ae ({j €N . (id j n 1d 1)} = {}})"
equal prﬁbﬂblllty). FOI'(T?Chedge{_? E, let Afbﬁthe event that f_ls monochromatic. using disjoint_set_is mutually_independent[of _ id Ae] P.MU_def assms idin by (simp add: Ae_def)
Clearly Pr[A;] = 2/2!f1 < 1/2%~1, Moreover, each event Ay is clearly mutually then show "A i . i € 7N —> 3 5. S ¢ 2N - {i} ncard S > card 2N - d - 1 A
independent of all the other events Ay for all edges f' that do not intersect f. The P.mutual_indep_events (Ae i) Ae S"
proof -
result now follows from Corollary 5.1.2. n (5 lines)
qed

show "M 1. i € N — P.prob{ae 1} = 1/(2 powi (k-1))"
unfolding Ae_def using P.prob_monochromztic_edge_bound[of _ k] iedge assms(4) assms({l) by auto
show "exp(1} * (1 / 2 powi int (k - 1}) * (d + 1) = 1"
using assms(3) by (simp add: field simps del:0ne nat_def)
(metis Mum.of_nat _simps(2) assms(4) diff_is 0 _eq diff_less less_one of_nat_diff power_int_of _nat)
ged (auto simp add: Ae def E nempty P.sefs eq P.space eq)

— < 4 obtain »
then obtain f where fin: "f = 42" and " 1. 1 € ?N — — mono_edge f (id i)" using Ae_def
P.obtain_intersection_proplof Ae ?N "A f i. mono_edge f (id i)"] P.space_egq P.sets_eq by auto

then have "f\ e. e =¢ E — - mono_edge T &
using 1ideg mset_set_implies[of id ?N E "A e. - mono_edge f e"] by blast
then show 7thesis unfolding is_n_colourable_def
using 1s proper_colouring alt2 fin all_n wvertex colourings deflof 2] by auto
ged



Application: A more advanced bound

Theorem 5.2.1 Let H = (V, E) be a hypergraph in which every edge has at least
k elements, and suppose that each edge of H intersects at most d other edges. If
e(d + 1) < 257 then H has property B.

Proof. Coloreach vertex v of H, randomly and independently, either blue or red (with

equal probability). Foreachedge f € E, let A be the event that f is monochromatic/”

Clearly Pr[A,] = 2/2V1 < 1/2°~". Moreover, each event Ay is clearly mutually\
independent of all the other events Ay for all' € ' that do not intersect f. The 1

resuit now tollows from Corollary 5.1.2. |

+ Mutual Independence Principle!!!

proposition erdos_propertyB_LLL:

assumes "M e. e c#E — card e = k"

assumes "N\ e . e =#E — size {# T =# (E - {#=#})
assumes "exp(l})*(d+1) = (2 powi (k - 1})"
assumes "k = 8"

shows "has_property B"

frne# {}# = d"

proof -

— < 1 set up probability space »

{?nterpret P: vertex colour space V E 2 (* Reuse set up *)

by unfold locales (aute simp add: order_ge_two)

let 2N = "{0..=size E}"

obtain id where ideq: "image_mset id (mset_set ?N) = E" and idin: "id € ?N — set_mset E"
using obtain_function_on_ext_funcset[of "?N" E] by auto

then have iedge: "Ai. 1 € ?N — 1id 1 =# E" by auto

— <2 define event

define Ae where "Ac = X 1. {f € C+2 . mono_edge f (id 1)}"

— < (3} Prove each event A is mutually independent of all other mono events for other
edges that don't intersect.

have "® =< P.prob ([JA1=?N. space P.MU - Ae A1}"

- proof (intro P.lovasz_local_symmetric[of ?N Ae d "(1/(2 powi (k-1)))"1}

[ have mis: "Ai . i € ?N — P.mutual_indep_events (As 1) Ae ({] =?N . (id j n id i) = {}})"
using disjoint_set_is mutually_independent[of _ id Ae] P.MU_def assms idin by (simp add: Ae_def)

then show "N 1 . 1 PN — 2 5. 5 ¢ ?N - {1} A~ card & = card 2N - d - 1 &
P.mutual_indep_events (Ae 1} Ae S"
proof -
... (5lines)
- qed

show "M 1. i € N — P.prob{ae 1} = 1/(2 powi (k-1))"

e

unfolding Ae_def using P.prob_monochromztic_edge_bound[of _ k] iedge assms(4) assms({l) by auto
" show "exp(1) * (1 / 2 powi int (k - 1)) * (d + 1) = 1"

using assms(3) by (simp add: field simps del:0ne nat_def)

(metis Mum.of_nat _simps(2) assms(4) diff_is 0 _eq diff_less less_one of_nat_diff power_int_of _nat)
ged (auto simp add: Ae def E nempty P.sefs eq P.space eq)

= — < 4 obtain
[ then obtain f where fin: "f = (42" and "A i. 1 € ?N — - mono_edge f (id i)" using Ae def
P.obtain_intersection_proplof Ae ?N "A f i. mono_edge f (id i)"] P.space_egq P.sets_eq by auto

then have "f\ e. e =¢ E — - mono_edge T &

using 1ideg mset_set_implies[of id ?N E "A e. - mono_edge f e"] by blast
then show 7thesis unfolding is_n_colourable_def

using 1s proper_colouring alt2 fin all_n wvertex colourings deflof 2] by auto
d



Mutual Independence Principle

The Mutual Independence Principle Suppose that X = Xy,..., X,

18 a sequence of independent random experiments. Suppose further that
Ay, .., A, is a set of events, where each A; is determined by F; C X. If
Fin(F,,....Fi,) =0 then A; is mutually independent of {A;,,..., A; }.

Claim: Each event A, is mutually independent of the set of events { Ay :
fé& N.}UA..

Edge index for Ae

lemma disjnint_set_is_mutually_independen:[:/ Edge index for Ae
assumes iin: "i € {0..<(size E)}" /
assumes idffn: "idf € {0..<size E} — g set mset E"

assumes Aefn: "A i. 1 € {0..<size E} = Ae i = {f € C+2 . mono_edge f (idf 1i)}"
shows "prob space.mutual indep events (uniform count measure (C:2)) (Ae 1) Ae
({] €{0..<(size E)} . (idf j n idf 1) = {}})"



5. Formalisation Insights




Theme 1: Intuition in Probabilistic Proofs

Intuition is everywhere in probability proofs for combinatorics

“Obtaining” an Many calculation

exemplar structure

Introducing Randomness . re
& specific examples

General framework = partial solution



Theme 1: Intuition in Probabilistic Proofs

Two events are said to be independent
if either can occur without being

affected by the occurrence of the other
(Chalmers, 2018).

Independent
Events

Formally defining

) Physical intuition to
independent events

establish independence

The
multiplication
The basic multiplication law for independent law
events states: P(A N B) = P(A)P(B)



Theme 1: Intuition in Probabilistic Proofs

Clearly Pr[4,] = 21™

* i.e. Clearly vertex colouring events are independent, so we can just apply P(AB) = P(A)P(B) right?

 BUT - This is circular reasoning!

* To establish independence, we must prove the multiplication rule holds.

e Use a counting lemma instead on sets of functions

lemma prob edge colour:
assumes "e c# E" "c € {0..<n}"
shows "prob {f € C" . mono edge col f e c} = 1/(n powi (card e))"
proof -
have "card {0..<n} = n" by simp
moreover have "C" =V —e {0..<n}" using all n vertex colourings alt by blast
moreover have "{0..<n} # {}" using n not zero by simp
ultimately show ?thesis using prob uniform ex_ fun space[of V  "{0..<n}" el n_not zero
finite sets wellformed assms by (simp add: MU def V nempty mono edge col def)

ged



Theme 2: An Isabelle Probability Library Issue

p(ﬂ@) =P(Q) =1

P(U)=0+1=P) PU)=0+1=P)
(on paper proofs)

The issue For example... Therefore ...
. Q = all vertex colouring functi
0. Uin Isabelle o ——— (ﬂ Q) ) = 0
(in Isabelle)
Typically Q c U Clearly have ) c U +

The first time in four years that simple type theory caused me issues...
Solutions: pmf library for discrete results, rework probability definitions, proof work arounds



Theme 3: The importance of generality

 Modular, reusable, and extensible formal libraries
e Reducing duplication in formal libraries

* This work’s general framework -> successfully minimised rework.

* Interesting new use case of Isabelle’s locales.
* General efforts -> formalise new proofs more naturally.

* Balance practicality vs generality for ultimate usability



Concluding Thoughts

e Key contributions:
* Significant expansions to probability and hypergraph libraries in Isabelle/HOL, including the LLL.
* The general framework from the probabilistic method
e Formal proof of the “Mutual independence principle” (for hypergraphs).

* Applications: formalised several bounds on hypergraph colourings.

* Key lessons:

* Generalisation is both possible & important in formalisation, particularly as formal mathematical

libraries grow at a rapid pace! The up-front time investment is worth it.

» Several insights into the mathematical intuition around probabilistic proofs.



Concluding Thoughts

e Other Applications?

* Already some success with simplifying Balog-Szemeredi-Gowers proof

* Paper published at CPP2024: https://dl.acm.org/doi/10.1145/3636501.3636946

 Full AFP Formalisations available online:

* https://www.isa-afp.org/entries/Hypergraph Basics.html

e https://www.isa-afp.org/entries/Lovasz Local.html

* https://www.isa-afp.org/entries/Hypergraph Colourings.html

Contact: c.l.edmonds@sheffield.ac.uk | cledmonds.github.io


https://dl.acm.org/doi/10.1145/3636501.3636946
https://www.isa-afp.org/entries/Hypergraph_Basics.html
https://www.isa-afp.org/entries/Lovasz_Local.html
https://www.isa-afp.org/entries/Hypergraph_Colourings.html
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