Probabilistic Methods for Combinatorial Structures in Isabelle/HOL

Chelsea Edmonds¹ | c.l.edmonds@sheffield.ac.uk

Based on PhD work supervised by Lawrence C. Paulson² [Published at CPP2024]

University of Sheffield¹ | University of Cambridge^{1,2}

Proof Systems for Mathematics and Verification | EPFL June 2024

Overview

• Motivation: formalising maths, techniques vs theorems, the probabilistic method

• What we did:

- i. Combinatorial structure extensions
- ii. A general framework: probabilistic spaces for combinatorial structures
- iii. Probability library extensions, including the Lovász local lemma
- iv. A sample application: Hypergraph Colourings

• What we learnt:

- Formalisation insights: modularity, locale techniques etc
- Mathematical insights: circular reasoning in human intuition

1. The Motivating Problem

The Probabilistic Method - Why Formalise?

The Probabilistic Method is one of the most powerful and widely used tools applied in combinatorics (Alon & Spencer, 2015).

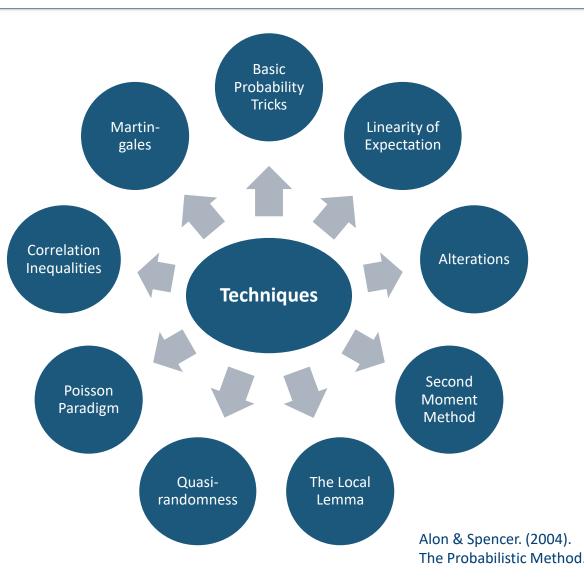
- Interest in formalised maths has grown significantly
- Only three pre-existing formalisations which use the probabilistic method in combinatorics -> focused on theorems not general techniques.
- Predominance of method in **modern** combinatorics research motivated by **applications**
 - -> how can we make it easier to formalise future work?

What is the Probabilistic Method?

Key Idea

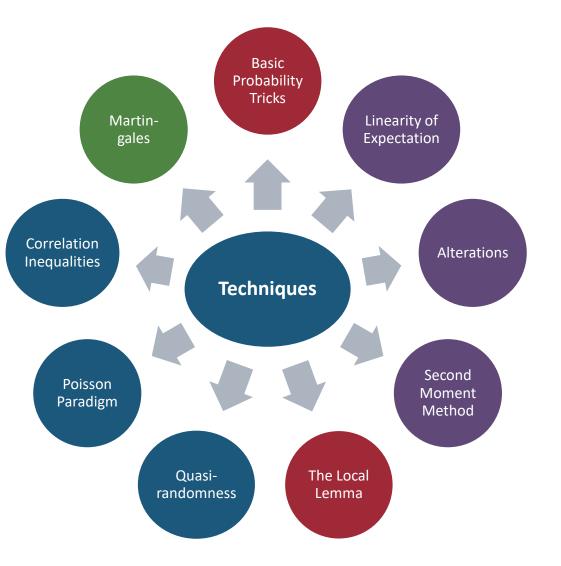
Given a probability space over some combinatorial structure...

Show the structure has the desired properties with positive probability. (May be via complement)



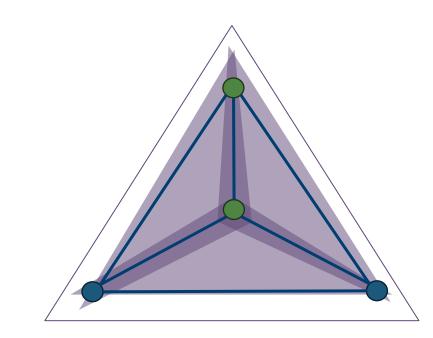
What is the Probabilistic Method?

The Probabilistic Method is one of the most powerful and widely used tools applied in combinatorics (Alon & Spencer, 2015).

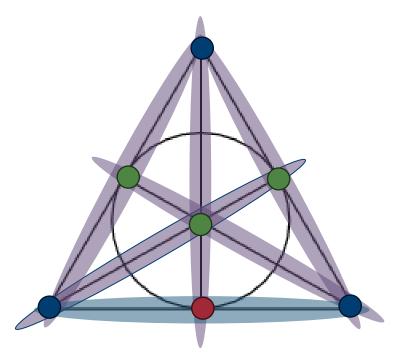


Hypergraph Colourings.

• A hypergraph (V, E), where E is a collection of subsets of V of any size, is "colourable" if there is a vertex colouring such that no edge is monochromatic.



2- colourable 3-uniform w/ 4 edges



Not 2- colourable 3-uniform w/ 7 edges

A Basic Proof

The Probabilistic Method:

Prove existence by showing a structure has a desired property with probability > 0

(or avoids bad properties with probability < 1)

Proposition 1.3.1 [Erdős (1963a)] Every *n*-uniform hypergraph with less than 2^{n-1} edges has property *B*. Therefore $m(n) \ge 2^{n-1}$.

Proof. Let H = (V, E) be an *n*-uniform hypergraph with less than 2^{n-1} edges. Color V randomly by two colors. For each edge $e \in E$, let A_e be the event that e is monochromatic. Clearly $\Pr[A_e] = 2^{1-n}$. Therefore

$$\Pr\left[\bigvee_{e \in E} A_e\right] \le \sum_{e \in E} \Pr\left[A_e\right] < 1$$

and there is a two-coloring without monochromatic edges.

Isabelle/HOL

- Simple type theory
- Automation: Sledgehammer
- Search tools: Query Search, Find Facts, SErAPIS
- The Isar structured proof language
- IDE: JEdit & VSCodium
- Libraries: Distribution & Archive of Formal Proofs (AFP)
- Additional features: Code generation, modularity, polymorphism, documentation generation ...

```
theorem assumes "prime p" shows "sqrt p \notin \mathbb{O}"
proof
 from <prime p> have p: "1 < p" by (simp add: prime def)</pre>
  assume "sqrt p \in \mathbb{Q}"
  then obtain m n :: nat where
      n: "n \neq 0" and sqrt rat: "|sqrt p| = m / n"
   and "coprime m n" by (rule Rats abs nat div natE)
 have eq: m^2 = p * n^{2n}
  proof -
    from n and sqrt rat have "m = !sqrt p! * n" by simp
    then show m^2 = p * n^{2m}
      by (metis abs of nat of nat eq iff of nat mult power2 eq square real sqrt abs2 rea
  ged
 have "p dvd m A p dvd n"
  proof
    from eq have "p dvd m2" ...
                                                                      sledgehammer proofs
   with <prime p> show "p dvd m" by (rule prime dvd power nat)
    then obtain k where "m = p * k" ..
    with eq have "p * n^2 = p^2 * k^{2"} by (auto simp add: power2 eq square ac simps)
    with <prime p> show "p dvd n"
      by (metis dvd triv left nat mult dvd cancell power2 eq square prime dvd power nat
  ged
  then have "p dvd gcd m n" by simp
 with <coprime m n> have "p = 1" by simp
  with p show False by simp
ged
```

2. Formally talking about Hypergraphs...

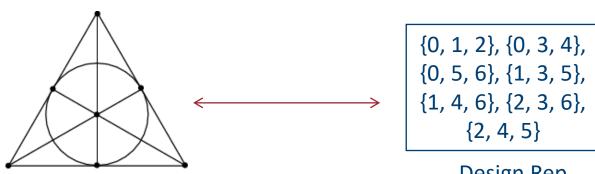
Hypergraph Structures

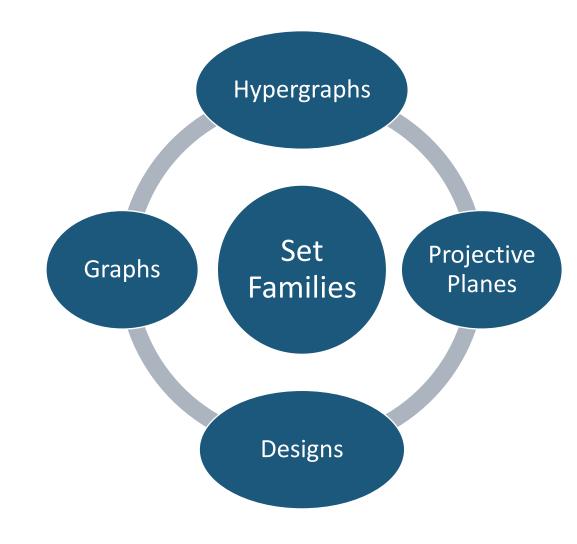
CHALLENGE 1

• Many combinatorial structures have the same underlying definition.

BUT

- Different languages/concepts/intuition
- Complex inheritance patterns
- Inconsistencies in definitions





Locales Basics

• Locales are Isabelle's module system. From a logical perspective, they are simply persistent contexts.

$$\wedge x_1 \dots x_n . \llbracket A_1; \dots; A_m \rrbracket \Rightarrow C.$$

• A simple example for combinatorics:

```
Parameters \rightarrow [ fixes point_set :: "'a set" ("\mathcal{V}")

fixes block_collection :: "'a set multiset" ("\mathcal{B}")

assumes wellformed: "b \in# \mathcal{B} \implies b \subseteq \mathcal{V}"

Assumptions
```

Locales Basics – Inheritance and Interpretations

• We have direct inheritance

locale hypersystem = incidence_system "vertices :: 'a set" "edges :: 'a hyp_edge multiset"
for "vertices" ("V") and "edges" ("E")

• And indirect inheritance (rewriting optional)

sublocale incidence_system \subseteq hypersystem $\mathcal{V} \mathcal{B}$ **rewrites** "hdegree v = point_replication_number $\mathcal{B} v$ " and "hdegree_set vs = points_index $\mathcal{B} vs$ "

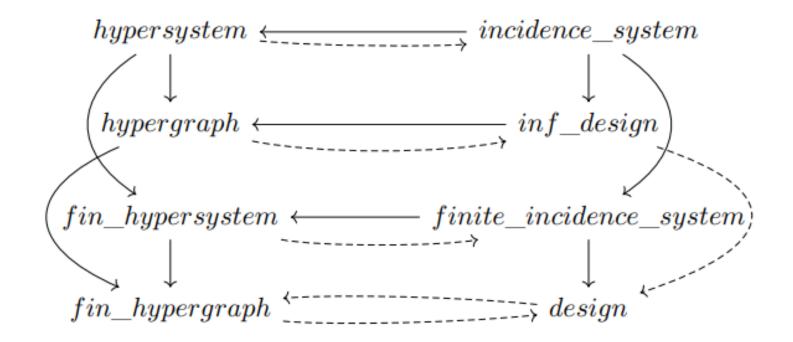
Interpretations (global & local)

interpret h: hypergraph "hyp_verts H" "hyp_edges H"
using assms(3) by simp

Designs to Hypergraphs

Locales let us reuse lemmas, theorems, and definitions from prior

combinatorial structure formalisations



2. A General Probabilistic Framework

A Basic Proof

The Probabilistic Method:

Prove existence by showing a structure has a desired property with probability > 0

(or avoids bad properties with probability < 1)

Proposition 1.3.1 [Erdős (1963a)] Every *n*-uniform hypergraph with less than 2^{n-1} edges has property *B*. Therefore $m(n) \ge 2^{n-1}$.

Proof. Let H = (V, E) be an *n*-uniform hypergraph with less than 2^{n-1} edges. Color V randomly by two colors. For each edge $e \in E$, let A_e be the event that e is monochromatic. Clearly $\Pr[A_e] = 2^{1-n}$. Therefore

$$\Pr\left[\bigvee_{e \in E} A_e\right] \le \sum_{e \in E} \Pr\left[A_e\right] < 1$$

and there is a two-coloring without monochromatic edges.

Identified Formalisation Challenges

- Reliance on human intuition
- Complex calculations
- Set up involved
- Definitions and notation

A first attempt at formalising a proof written in 1 line on paper!

proof -

```
fix e assume a: "e ∈ set mset E"
then have "{f \in C . edge is monochromatic2 f e} = (\bigcup c \in \{0, ., 2\} .{f \in C . \forall v \in e . f v = c})"
 using edge_is_monochromatic_set_union[of e 2] C_def by simp
also have "... = ([] c \in \{0::nat, 1\} .{f \in C . \forall v \in e . f v = c})"
 by fastforce
finally have eq: "{f \in C . edge_is_monochromatic2 f e} = {f \in C . \forall v \in e . f v = (0::nat)} \cup {f
  by auto
have prob c: "\land c. c \in \{0, .., 2\} \implies P.prob {f \in \mathbb{C} . \forall v \in \mathbf{e} . f v = c} = 1/(2 powi k)"
proof -
 fix c :: colour assume cin: "c \in {0..<2}"
  have ess: "e \subseteq \mathcal{V}" using a wellformed by auto
  then have lt: "card e < card \mathcal{V}"
    by (simp add: card mono local.finite)
  then have scard: "card {f \in C . \forall v \in e . f v = c} = (2 :: real) powi ((card \mathcal{V}) - card e)"
    unfolding C def using all n vertex colourings fun alt[of 2] card PiE filter range set[of c 2]
    using cin by fastforce
  have "P.prob {f \in C . \forall v \in e . f v = c} = card {f \in C . \forall v \in e . f v = c}/ (card C)"
    using measure uniform count measure[of C "{f \in C . \forall v \in e . f v = c} "] finC
    by fastforce
  also have "... = (2 \text{ powi} ((\text{card } \mathcal{V}) - \text{card } e))/(2 \text{ powi} (\text{card } \mathcal{V}))" using Ccard scard by simp
  also have "... = 2 powi (int (card \mathcal{V} - card e) - int (card \mathcal{V}))" by (simp add: power_int_diff)
  also have "... = 2 powi (int (card \mathcal{V}) - int (card e) - int (card \mathcal{V}))" using int ops lt by simp
  also have "... = 2 powi - (card e)" using assms(1) by (simp add: of nat diff)
  also have "... = inverse (2 powi (k))" using uniform a power int minus[of 2 "(int k)"] by simp
  finally show "P.prob {f \in C . \forall v \in e . f v = c} = 1/(2 powi k)"
    by (simp add: inverse eq divide)
aed
have ss: "\land c .{f \in C. \forall v \in e. f v = c} \in P.events"
 by (simp add: sts)
have "\wedge f . f \in C \implies \neg ((\forall v \in e . f v = (0::nat)) \wedge (\forall v \in e . f v = (1::nat)))"
proof (rule ccontr)
 fix f assume fin: "f \in C"
  assume "\neg \neg ((\forall v \in e. f v = 0) \land (\forall v \in e. f v = 1))"
  then have con: "(\forall v \in e. f v = 0) \land (\forall v \in e. f v = 1)" by auto
  then obtain v where "v \in e" using blocks_nempty a by auto
  then show False using fin con by auto
then have disj: "{f \in C . \forall v \in e . f v = (0::nat)} \cap {f \in C . \forall v \in e . f v = (1::nat)} = {}" b
then have "P.prob {f \in C . edge_is_monochromatic2 f e} = P.prob ({f \in C . \forall v \in e . f v = (0::nat
 using eq by simp
also have "... = P.prob {f \in C . \forall v \in e . f v = (0::nat)} + P.prob {f \in C . \forall v \in e . f v = (1:
  using P.finite_measure_Union[of "{f \in C . \forall v \in e . f v = (0::nat)}" "{f \in C . \forall v \in e . f v =
also have "... = 2/(2 powi (int k))" using prob_c by simp
also have "... = 2/(2* (2 powi ((int k) - 1)))" using assms(3)
 by (metis power_int_commutes power_int_minus_mult zero_neq_numeral)
finally show "P.prob {f \in C . edge is monochromatic2 f e} = 2 powi (1 - int k)"
  by (simp add: power int diff)
```

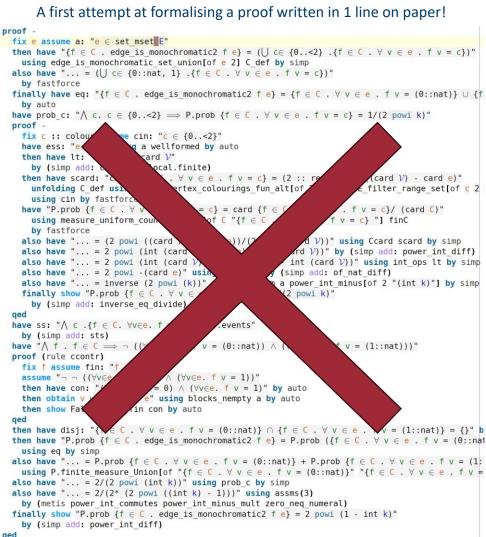
Identified Formalisation Challenges

How can we:

- **Shorten** the formal proof (mirroring natural proof)
- Generalise techniques used

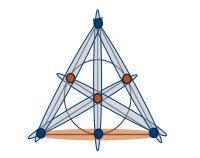
(formally)

• Avoid 'hacking' in future similar proofs



The Basic Method

- 1. Introduce randomness to the problem domain
- 2. Identify the desired properties/properties to avoid
- 3. Show object has desired properties with P > 0
- 4. In a finite space, there must then be an element of the space with the property!



Applying the Method Goal: Prove that every k-uniform hypergraph with fewer than 2^k-1 edges is 2-colourable

- 1. Colour a graph with 2 colours randomly
- 2. Property: colouring results in no edges being monochromatic.
- Show the complement: probability of all edges being monochromatic < 1
- 4. $P(A) = 1 (\neg A)$. Positive probability, and exemplar colouring can be obtained.

Formalisation Framework - Summary

Formal Framework

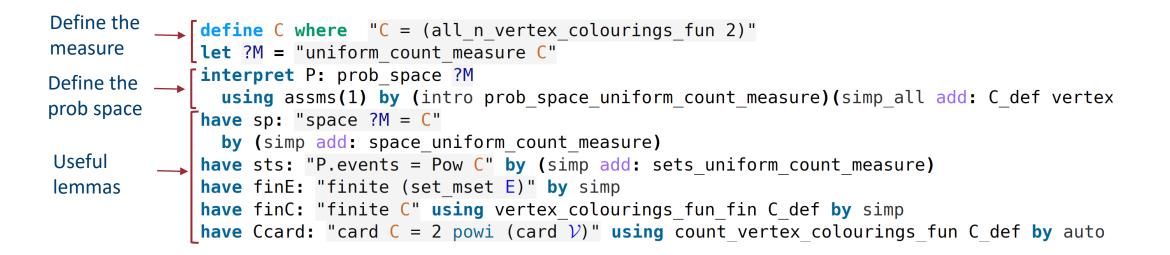
- **1. Define a probability space**
- 2. Define object properties
- 3. Calculate probability bounds
- 4. Obtain exemplar object

Traditional Framework

- Introduce randomness to the Problem Domain
- 2. Identify the desired properties/properties to avoid
- 3. Show object has desired properties with P > 0
- 4. In a finite space, there must then be an element of the space with the property!

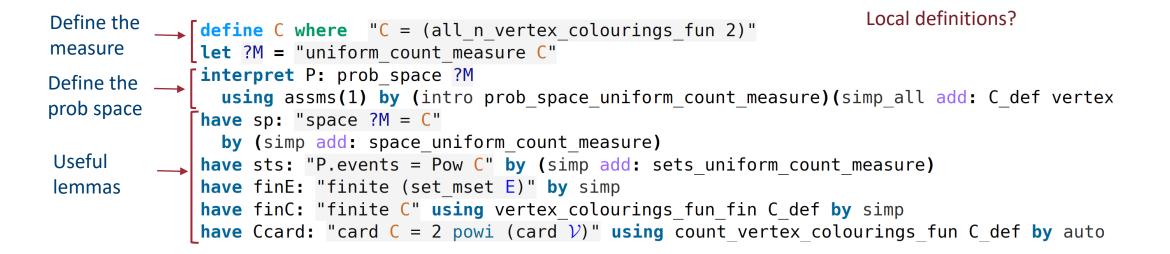
The Formalisation Framework – Step 1

To "introduce randomness" we must define a probability space (Ω, \mathcal{F}, P) formally

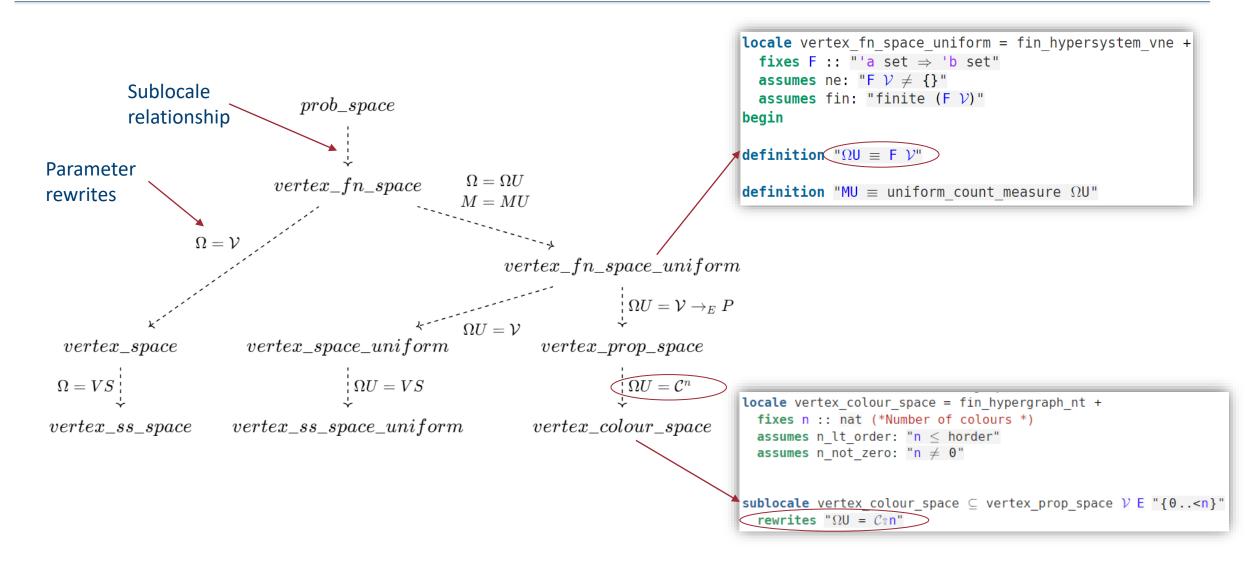


The Formalisation Framework – Step 1

To "introduce randomness" we must define a probability space (Ω, \mathcal{F}, P) formally



The Formalisation Framework – Step 1 General!



Application: A Vertex Colouring Space Example

```
locale vertex colour space = fin hypergraph nt +
  fixes n :: nat (*Number of colours *)
  assumes n lt order: "n < order"
  assumes n not zero: "n \neq 0"
sublocale vertex colour space \subseteq vertex prop space \mathcal{V} \in \{0, ., <n\}
  rewrites "\Omega U = C^{n}"
proof -
  have "\{0...<n\} \neq \{\}" using n not zero by simp
  then interpret vertex prop space \mathcal{V} \in \{0, ., <n\}
    by (unfold locales) (simp all)
  show "vertex prop space \mathcal{V} \in \{0, ., <n\}" by (unfold locales)
  show "\Omega U = C^{n}"
    using \Omega def all n vertex colourings alt by auto
qed
```

Application: A Vertex Colouring Space Example

```
locale vertex colour space = fin hypergraph nt +
  fixes n :: nat (*Number of colours *)
  assumes n lt order: "n < order"
  assumes n not zero: "n \neq 0"
sublocale vertex colour space \subseteq vertex prop space \mathcal{V} \in \{0, ., <n\}
  rewrites "\Omega U = C^{n}"
proof -
  have "\{0...<n\} \neq \{\}" using n not zero by simp
  then interpret vertex prop space \mathcal{V} \in \{0, ., <n\}
    by (unfold locales) (simp all)
  show "vertex prop space \mathcal{V} \in \{0, ., <n\}" by (unfold locales)
  show "\Omega U = C^{n}"
    using \Omega def all n vertex colourings alt by auto
ged
```

Locale context contains general lemmas on vertex colourings for any future applications of the probabilistic method to colourings!

The Formalisation Framework – Step 3

• The Union bound:

lemma Union_bound_avoid:
 assumes "finite A"
 assumes "(∑a ∈ A. prob a) < 1"
 assumes "A ⊆ events"
 shows "prob (space M - ∪A) > 0"

Lemma "lifted" from measure theory libraries

The Complete Independence Bound

```
lemma complete_indep_bound3:
  assumes "finite A"
  assumes "A \neq {}"
  assumes "F ` A \subseteq events"
  assumes "indep_events F A"
  assumes "\land a . a \in A \implies prob (F a) < 1"
  shows "prob (\bigcirc a \in A. space M - F a) > 0"
```

New formalisation which uses measure theory basics.

The Formalisation Framework – Step 4

- Obtaining an object from a probability!
- Some basic rules

```
lemma prob_lt_one_obtain:
   assumes "{e ∈ space M . Q e} ∈ events"
   assumes "prob {e ∈ space M . Q e} < 1"
   obtains e where "e ∈ space M" and "¬ Q e"</pre>
```

```
lemma prob_gt_zero_obtain:
   assumes "{e ∈ space M . Q e} ∈ events"
   assumes "prob {e ∈ space M . Q e} > 0"
   obtains e where "e ∈ space M" and "Q e"
```

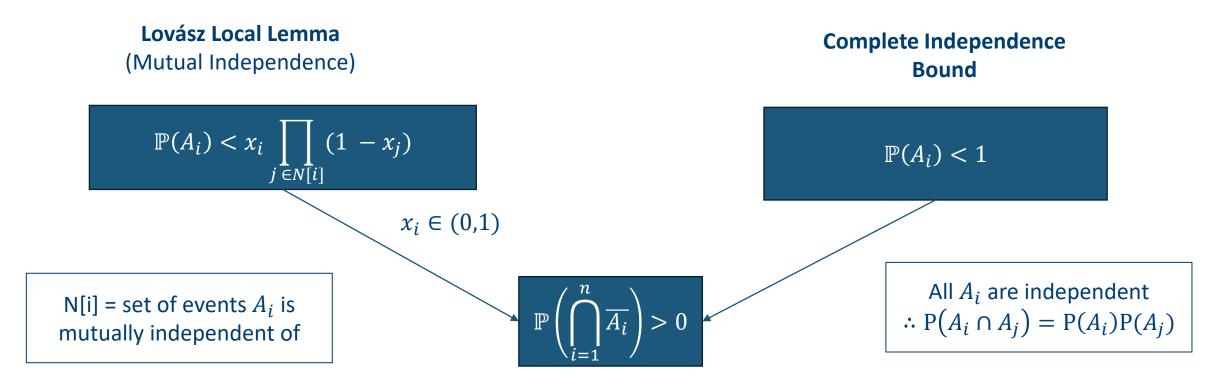
• Combining steps 3 & 4!

```
lemma Union_bound_obtain_fun:
   assumes "finite A"
   assumes "(∑a ∈ A. prob (f a)) < 1"
   assumes "f ` A ⊆ events"
   obtains e where "e ∈ space M" and "e ∉ ∪( f` A)"</pre>
```

3. More Probability Extensions (The Lovász Local Lemma (LLL))

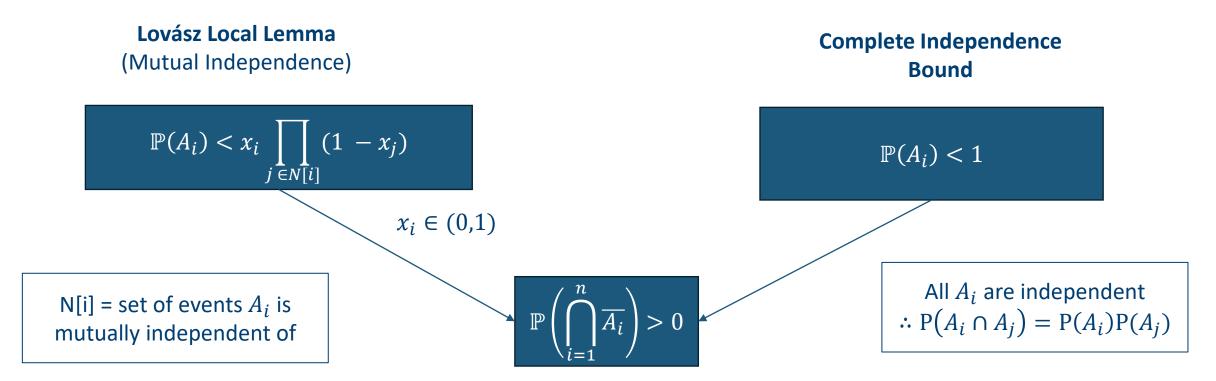
LLL Background – Step 3

Given a set of bad events: $A = \{A_1, A_2, \dots, A_n\}$, to avoid $\mathbb{P}(\bigcap_{i=1}^n A_i) > 0$



LLL Background – Step 3

Given a set of bad events: $A = \{A_1, A_2, ..., A_n\}$, to avoid $\mathbb{P}(\bigcap_{i=1}^n \overline{A_i}) > 0$



An event A is *mutually independent* of a set S if for any $T \subseteq S$, $\mathbb{P}(A) = P(A \mid T)$

LLL Formal Theorem Statement – Step 3

Lemma 5.1.1 [The Local Lemma; General Case] Let A_1, A_2, \ldots, A_n be events in an arbitrary probability space. A directed graph D = (V, E) on the set of vertices $V = \{1, 2, \ldots, n\}$ is called a dependency digraph for the events A_1, \ldots, A_n if for each $i, 1 \le i \le n$, the event A_i is mutually independent of all the events $\{A_j : (i, j) \notin E\}$. Suppose that D = (V, E) is a dependency digraph for the above events and suppose there are real numbers x_1, \ldots, x_n such that $0 \le x_i < 1$ and $\Pr[A_i] \le x_i \prod_{(i,i) \in E} (1 - x_j)$ for all $1 \le i \le n$. Then

$$\Pr\left[\bigwedge_{i=1}^{n} \overline{A_i}\right] \ge \prod_{i=1}^{n} (1 - x_i)$$

In particular, with positive probability no event A_i holds.

```
theorem lovasz_local_general:
    assumes "A \neq {}"
    assumes "F ` A \subseteq events"
    assumes "finite A"
    assumes "\land Ai . Ai \in A \implies f Ai \ge 0 \land f Ai < 1"
    assumes "\land Ai . Ai \in A \implies f Ai \ge 0 \land f Ai < 1"
    assumes "dependency_digraph G M F"
    assumes "\land Ai. Ai \in A \implies (prob (F Ai) \le (f Ai) \ast (\prod Aj \in pre_digraph.neighborhood G Ai. (1 - (f Aj))))"
    assumes "pverts G = A"
    shows "prob (\bigcap Ai \in A . (space M - (F Ai))) \ge (\prod Ai \in A . (1 - f Ai))" "(\prod Ai \in A . (1 - f Ai)) > 0"
```

LLL Formal Theorem Statement – Step 3

Lemma 5.1.1 [The Local Lemma; General Case] Let A_1, A_2, \ldots, A_n be events A1 in an arbitrary probability space. A directed graph D = (V, E) on the set of vertices $V = \{1, 2, \ldots, n\}$ is called a dependency digraph for the events A_1, \ldots, A_n if for each $i, 1 \le i \le n$, the event A_i is mutually independent of all the events $\{A_j : (i, j) \notin E\}$. Suppose that D = (V, E) is a dependency digraph for the above A2 events and suppose there are real numbers x_1, \ldots, x_n such that $0 \le x_i < 1$ and A3 $\Pr[A_i] \le x_i \prod_{(i,j) \in E} (1 - x_j)$ for all $1 \le i \le n$. Then A4

$$\Pr\left[\bigwedge_{i=1}^{n} \overline{A_i}\right] \ge \prod_{i=1}^{n} (1-x_i) \,. \quad \mathsf{C1}$$

In particular, with positive probability no event A_i holds. C2

```
theorem lovasz_local_general:

assumes "A \neq {}"

assumes "F`A \subseteq events"

assumes "finite A"

assumes "\land Ai . Ai \in A \implies f Ai \ge 0 \land f Ai < 1"

Assumes "\land Ai . Ai \in A \implies f Ai \ge 0 \land f Ai < 1"

Assumes "dependency_digraph G M F"

A2

assumes "\land Ai. Ai \in A \implies (prob (F Ai) \le (f Ai) * (\prod Aj \in pre_digraph.neighborhood G Ai. (1 - (f Aj))))"

A4

assumes "pverts G = A"

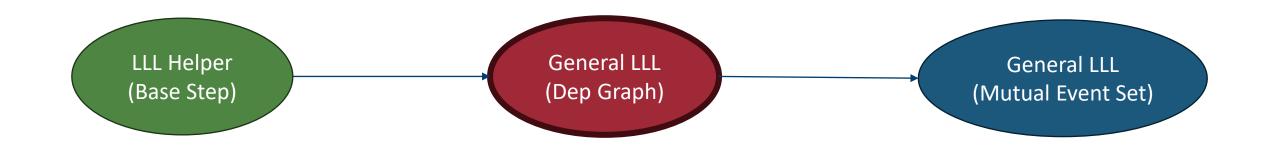
A2

shows "prob (\bigcap Ai \in A . (space M - (F Ai))) \ge (\prod Ai \in A . (1 - f Ai))" "(\prod Ai \in A . (1 - f Ai)) \ge 0"

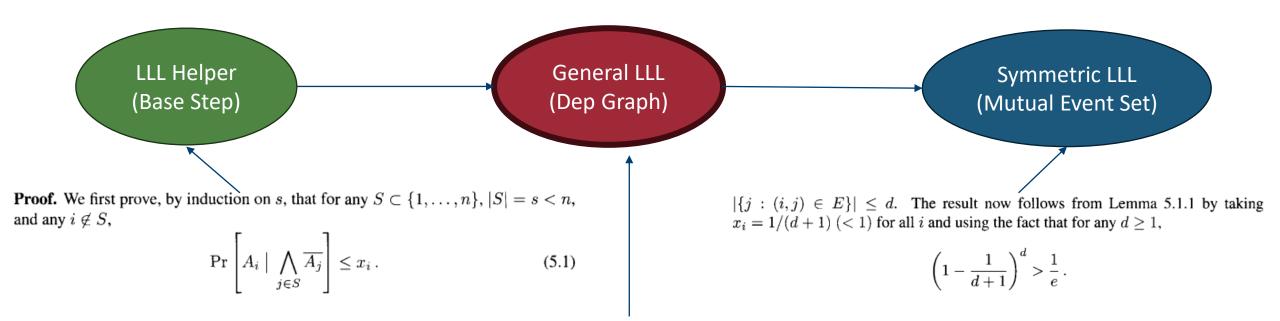
C1

C2
```

LLL Paper Proof Sketch – Step 3



LLL Paper Proof Sketch – Step 3

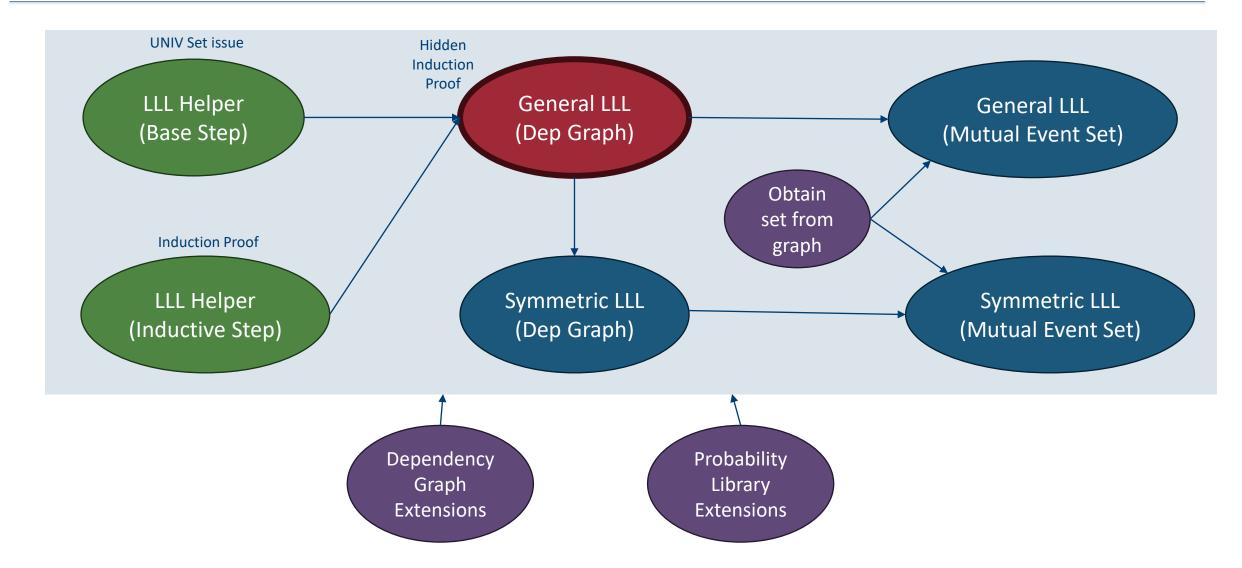


The assertion of Lemma 5.1.1 now follows easily, as

$$\Pr\left[\bigwedge_{i=1}^{n} \overline{A_{i}}\right] = (1 - \Pr\left[A_{1}\right]) \cdot (1 - \Pr\left[A_{2} \mid \overline{A_{1}}\right]) \cdots$$
$$\cdots \left(1 - \Pr\left[A_{n} \mid \bigwedge_{i=1}^{n-1} \overline{A_{i}}\right]\right) \ge \prod_{i=1}^{n} (1 - x_{i})$$

completing the proof.

LLL Formal Proof Sketch – Step 3



LLL Symmetric – Step 3

Corollary 5.1.2 [The Local Lemma; Symmetric Case] Let $A_1, A_2, ..., A_n$ be events in an arbitrary probability space. Suppose that each event A_i is mutually independent of a set of all the other events A_j but at most d, and that $\Pr[A_i] \leq p$ for all $1 \leq i \leq n$. If

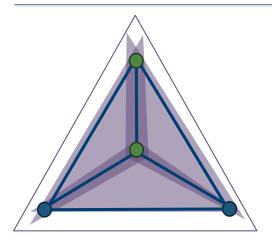
$$ep(d+1) \le 1 \tag{5.5}$$

then $\Pr\left[\bigwedge_{i=1}^{n} \overline{A_i}\right] > 0.$

```
theorem lovasz_local_symmetric:
fixes d :: nat
assumes "A ≠ {}"
assumes "F`A ⊆ events"
assumes "finite A"
assumes "∧ Ai. Ai ∈ A ⇒ (∃ S . S ⊆ A - {Ai} ∧ card S ≥ card A - d - 1 ∧ mutual_indep_events (F Ai) F S)"
assumes "∧ Ai. Ai ∈ A ⇒ prob (F Ai) ≤ p"
assumes "exp(1)* p * (d + 1) ≤ 1"
shows "prob (∩ Ai ∈ A . (space M - (F Ai))) > 0"
proof -
obtain G where odg: "dependency_digraph G M F" "pverts G = A" "∧ Ai. Ai ∈ A ⇒ out_degree G Ai ≤ d"
using assms obtain_dependency_graph by metis
then show ?thesis using odg assms lovasz_local_symmetric_dep_graph[of A F G d p] by auto
ged
```

5. Applications

Application: Defining Hypergraph Colourings



abbreviation vertex_colouring :: "('a \Rightarrow colour) \Rightarrow nat \Rightarrow bool" where "vertex_colouring f n \equiv f \in \mathcal{V} \rightarrow $_E$ {0..<n}"

definition mono_edge :: "('a \Rightarrow colour) \Rightarrow 'a hyp_edge \Rightarrow bool" where "mono_edge f e $\equiv \exists$ c. \forall v \in e. f v = c"

definition is_proper_colouring :: "('a \Rightarrow colour) \Rightarrow nat \Rightarrow bool" where "is_proper_colouring f n \equiv vertex_colouring f n \land (\forall e \in # E. \forall c \in {0..<n}. f ` e \neq {c})"

definition is_n_colourable :: "nat \Rightarrow bool" where "is_n_colourable n $\equiv \exists$ f . is_proper_colouring f n"

definition all_n_vertex_colourings :: "nat \Rightarrow ('a \Rightarrow colour) set" where "all_n_vertex_colourings n \equiv {f . vertex_colouring f n}"

notation all_n_vertex_colourings ("(C_{l})" [502] 500)

abbreviation (in hypergraph) has_property_B :: "bool" where
"has_property_B = is_n_colourable 2"

Application: A Vertex Colouring Space Example

```
locale vertex colour space = fin hypergraph nt +
  fixes n :: nat (*Number of colours *)
  assumes n lt order: "n < order"
  assumes n not zero: "n \neq 0"
sublocale vertex colour space \subseteq vertex prop space \mathcal{V} \in \{0, ., <n\}
  rewrites "\Omega U = C^{n}"
proof -
  have "\{0...<n\} \neq \{\}" using n not zero by simp
  then interpret vertex prop space \mathcal{V} \in \{0, ., <n\}
    by (unfold locales) (simp all)
  show "vertex prop space \mathcal{V} \in \{0, ., <n\}" by (unfold locales)
  show "\Omega U = C^{n}"
    using \Omega def all n vertex colourings alt by auto
ged
```

Locale contexts contain general lemmas on useful probability calculations for vertex colourings

Application: The basic method

Proposition 1.3.1 [Erdős (1963a)] Every n-uniform hypergraph with less than 2^{n-1} edges has property B. Therefore $m(n) \ge 2^{n-1}$.

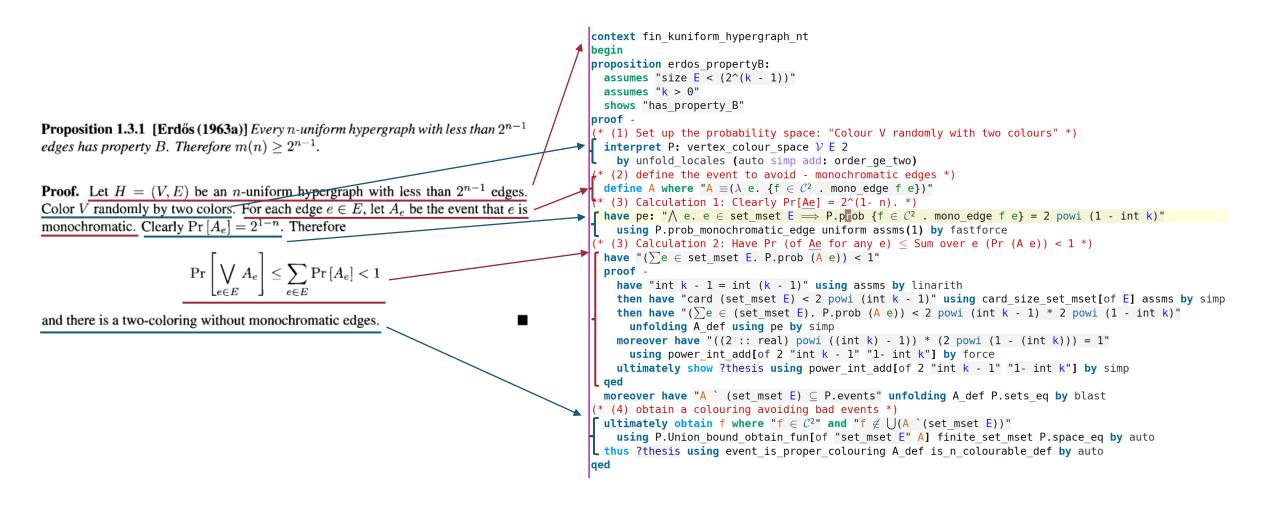
Proof. Let H = (V, E) be an *n*-uniform hypergraph with less than 2^{n-1} edges. Color V randomly by two colors. For each edge $e \in E$, let A_e be the event that e is monochromatic. Clearly $\Pr[A_e] = 2^{1-n}$. Therefore

$$\Pr\left[\bigvee_{e \in E} A_e\right] \le \sum_{e \in E} \Pr\left[A_e\right] < 1$$

and there is a two-coloring without monochromatic edges.

```
context fin kuniform hypergraph nt
begin
proposition erdos propertyB:
  assumes "size E < (2^{(k - 1)})"
  assumes "k > 0"
  shows "has property B"
proof -
(* (1) Set up the probability space: "Colour V randomly with two colours" *)
  interpret P: vertex colour space \mathcal{V} \in \mathcal{L}
    by unfold locales (auto simp add: order ge two)
(* (2) define the event to avoid - monochromatic edges *)
  define A where "A \equiv (\lambda \ e. \ \{f \in C^2 \ . \ mono \ edge \ f \ e\})"
(* (3) Calculation 1: Clearly Pr[Ae] = 2^(1- n). *)
 have pe: "\land e. e \in set mset E \implies P.p ob {f \in C^2 . mono edge f e} = 2 powi (1 - int k)"
    using P.prob monochromatic edge uniform assms(1) by fastforce
(* (3) Calculation 2: Have Pr (of Ae for any e) < Sum over e (Pr (A e)) < 1 *)
  have "(\sum e \in set mset E. P.prob (A e)) < 1"
  proof -
    have "int k - 1 = int (k - 1)" using assms by linarith
    then have "card (set mset E) < 2 powi (int k - 1)" using card size set mset[of E] assms by simp
    then have "(\sum e \in (\text{set mset } E). P.prob (A e)) < 2 powi (int k - 1) * 2 powi (1 - int k)"
      unfolding A def using pe by simp
    moreover have "((2 :: real) powi ((int k) - 1)) * (2 powi (1 - (int k))) = 1"
      using power int add[of 2 "int k - 1" "1- int k"] by force
    ultimately show ?thesis using power int add[of 2 "int k - 1" "1- int k"] by simp
  aed
  moreover have "A ( (set mset E) \subset P.events" unfolding A def P.sets eg by blast
(* (4) obtain a colouring avoiding bad events *)
  ultimately obtain f where "f \in C^2" and "f \notin \bigcup(A \land (set mset E))"
    using P.Union bound obtain fun[of "set mset E" A] finite set mset P.space eq by auto
  thus ?thesis using event is proper colouring A def is n colourable def by auto
ged
```

Application: the basic method



Application: A more advanced bound

n-uniform hypergraph

Proposition 1.3.1 [Erdős (1963a)] Every n-uniform hypergraph with less than 2^{n-1} edges has property B. Therefore $m(n) \ge 2^{n-1}$.

Proof. Let H = (V, E) be an *n*-uniform hypergraph with less than 2^{n-1} edges. Color V randomly by two colors. For each edge $e \in E$, let A_e be the event that e is monochromatic. Clearly $\Pr[A_e] = 2^{1-n}$. Therefore

$$\Pr\left[\bigvee_{e \in E} A_e\right] \le \sum_{e \in E} \Pr\left[A_e\right] < 1$$

and there is a two-coloring without monochromatic edges.

Union Bound

Hypergraph w/ edge conditions

Theorem 5.2.1 Let H = (V, E) be a hypergraph in which every edge has at least k elements, and suppose that each edge of H intersects at most d other edges. If $e(d+1) \leq 2^{k-1}$ then H has property B.

Proof. Color each vertex v of H, randomly and independently, either blue or red (with equal probability). For each edge $f \in E$, let A_f be the event that f is monochromatic. Clearly $\Pr[A_f] = 2/2^{|f|} \le 1/2^{k-1}$. Moreover, each event A_f is clearly mutually independent of all the other events $A_{f'}$ for all edges f' that do not intersect f. The result now follows from Corollary 5.1.2.

Lovász Local Lemma

More advanced, but smaller proof?

Application: A more advanced bound

Theorem 5.2.1 Let H = (V, E) be a hypergraph in which every edge has at least k elements, and suppose that each edge of H intersects at most d other edges. If $e(d+1) \leq 2^{k-1}$ then H has property B.

Proof. Color each vertex v of H, randomly and independently, either blue or red (with equal probability). For each edge $f \in E$, let A_f be the event that f is monochromatic. Clearly $\Pr[A_f] = 2/2^{|f|} \le 1/2^{k-1}$. Moreover, each event A_f is clearly mutually independent of all the other events $A_{f'}$ for all edges f' that do not intersect f. The result now follows from Corollary 5.1.2.

proposition erdos propertyB LLL: assumes " Λ e. e \in #E \implies card e > k" assumes " \land e . e \in #E \implies size {# f \in # (E - {#e#}) . f \cap e \neq {}#} \leq d" assumes $exp(1)*(d+1) \le (2 powi (k - 1))^{*}$ assumes "k > 0"shows "has property B" proof -— < 1 set up probability space > **interpret** P: vertex colour space $\mathcal{V} \in \mathbb{Z}$ (* Reuse set up *) by unfold_locales (auto simp add: order_ge_two) let ?N = "{0..<size E}"</pre> obtain id where ideq: "image mset id (mset set ?N) = E" and idin: "id \in ?N \rightarrow_{F} set mset E" using obtain function on ext funcset[of "?N" E] by auto then have iedge: " \land i. i \in ?N \implies id i \in # E" by auto — <2 define event →</p> **define** Ae where "Ae $\equiv \lambda$ i. {f $\in C$ ⁺2 . mono edge f (id i)}" - < (3) Prove each event A is mutually independent of all other mono events for other edges that don't intersect. → have "0 < P.prob (∩Ai∈?N. space P.MU - Ae Ai)"</pre> proof (intro P.lovasz local symmetric[of ?N Ae d "(1/(2 powi (k-1)))"]) have mis: " Λi . $i \in ?N \longrightarrow P$.mutual indep events (Ae i) Ae $(\{j \in ?N : (id \ j \cap id \ i) = \{\}\})$ " using disjoint_set_is_mutually independent[of _ id Ae] P.MU_def assms idin by (simp add: Ae_def) then show " \land i . i \in ?N \implies \exists S. S \subseteq ?N - {i} \land card S \ge card ?N - d - 1 \land P.mutual indep events (Ae i) Ae S" proof -... (5 lines) ged show " \land i. i \in ?N \implies P.prob(Ae i) \leq 1/(2 powi (k-1))" unfolding Ae def using P.prob monochromatic edge bound[of _ k] iedge assms(4) assms(1) by auto show "exp(1) * $(1 / 2 \text{ powi int } (k - 1)) * (d + 1) \le 1$ " using assms(3) by (simp add: field simps del:One nat def) (metis Num.of nat simps(2) assms(4) diff is 0 eq diff less less one of nat diff power int of nat) ged (auto simp add: Ae def E nempty P.sets eq P.space eq) — < 4 obtain > then obtain f where fin: "f $\in C_{2}$ " and " \wedge i. i \in ?N $\rightarrow \neg$ mono edge f (id i)" using Ae def P.obtain intersection prop[of Ae ?N " λ f i. mono edge f (id i)"] P.space eg P.sets eg by auto then have " \land e. e \in # E \implies \neg mono edge f e" using ideq mset set implies [of id ?N E " λ e. \neg mono edge f e"] by blast then show ?thesis unfolding is n colourable def using is proper colouring alt2 fin all n vertex colourings def[of 2] by auto ged

Application: A more advanced bound

Theorem 5.2.1 Let H = (V, E) be a hypergraph in which every edge has at least k elements, and suppose that each edge of H intersects at most d other edges. If $e(d+1) \leq 2^{k-1}$ then H has property B.

Proof. Color each vertex v of H, randomly and independently, either blue or red (with equal probability). For each edge $f \in E$, let A_f be the event that f is monochromatic. Clearly $\Pr[A_f] = \frac{2}{2} \frac{1}{2^{k-1}}$. Moreover, each event A_f is clearly mutually-independent of all the other events $A_{f'}$ for all edges f' that do not intersect f. The result now follows from Corollary 5.1.2.

+ Mutual Independence Principle!!!

```
proposition erdos propertyB LLL:
  assumes "\Lambda e. e \in#E \implies card e > k"
  assumes "\land e . e \in#E \implies size {# f \in# (E - {#e#}) . f \cap e \neq {}#} \leq d"
  assumes "exp(1)*(d+1) \le (2 powi (k - 1))"
  assumes "k > 0"
  shows "has property B"
proof -
  — < 1 set up probability space >
  interpret P: vertex colour space \mathcal{V} \in \mathbb{Z} (* Reuse set up *)
   by unfold locales (auto simp add: order ge two)
  let ?N = "{0..<size E}"
  obtain id where ideg: "image mset id (mset set ?N) = E" and idin: "id \in ?N \rightarrow_{\mathsf{F}} set mset E"
    using obtain function on ext funcset[of "?N" E] by auto
  then have iedge: "\landi. i \in ?N \implies id i \in# E" by auto
  — <2 define event →</p>
define Ae where "Ae \equiv \lambda i. {f \in C_{12} . mono edge f (id i)}"
   - < (3) Prove each event A is mutually independent of all other mono events for other
    edges that don't intersect. →
  have "0 < P.prob (∩Ai∈?N. space P.MU - Ae Ai)"</pre>
  proof (intro P.lovasz local symmetric[of ?N Ae d "(1/(2 powi (k-1)))"])
    have mis: "\Lambda i . i \in ?N \longrightarrow P.mutual indep events (Ae i) Ae (\{j \in ?N : (id j \cap id i) = \{\}\})"
      using disjoint set is mutually independent[of _ id Ae] P.MU def assms idin by (simp add: Ae def)
     then show "\land i . i \in ?N \implies \exists S. S \subseteq ?N - {i} \land card S \ge card ?N - d - 1 \land
      P.mutual indep events (Ae i) Ae S"
    proof -
        ... (5 lines)
    aed
     show "\land i. i \in ?N \implies P.prob(Ae i) \leq 1/(2 powi (k-1))"
      unfolding Ae def using P.prob monochromatic edge bound[of _ k] iedge assms(4) assms(1) by auto
    show "exp(1) * (1 / 2 \text{ powi int } (k - 1)) * (d + 1) \le 1"
      using assms(3) by (simp add: field simps del:One nat def)
      (metis Num.of nat simps(2) assms(4) diff is 0 eq diff less less one of nat diff power int of nat)
  ged (auto simp add: Ae def E nempty P.sets eq P.space eq)
  — < 4 obtain >
  then obtain f where fin: "f \in C_{12}" and "\wedge i. i \in ?N \rightarrow \neg mono edge f (id i)" using Ae def
    P.obtain intersection prop[of Ae ?N "\lambda f i. mono edge f (id i)"] P.space eg P.sets eg by auto
  then have "\land e. e \in# E \implies \neg mono edge f e"
    using ideq mset set implies [of id ?N E "\lambda e. \neg mono edge f e"] by blast
  then show ?thesis unfolding is n colourable def
    using is proper colouring alt2 fin all n vertex colourings def[of 2] by auto
```

Mutual Independence Principle

The Mutual Independence Principle Suppose that $\mathcal{X} = X_1, \ldots, X_m$ is a sequence of independent random experiments. Suppose further that A_1, \ldots, A_n is a set of events, where each A_i is determined by $F_i \subseteq \mathcal{X}$. If $F_i \cap (F_{i_1}, \ldots, F_{i_k}) = \emptyset$ then A_i is mutually independent of $\{A_{i_1}, \ldots, A_{i_k}\}$.

Claim: Each event A_e is mutually independent of the set of events $\{A_f : f \notin N_e\} \cup A_e$.

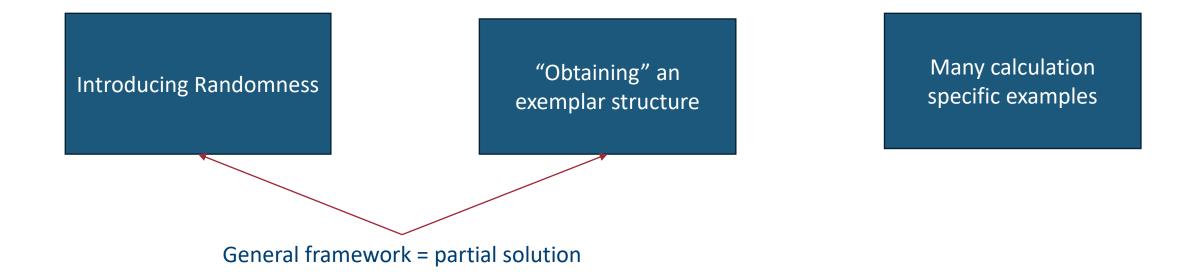
```
lemma disjoint_set_is_mutually_independent:
    assumes iin: "i \in \{0..<(size E)\}"
    assumes idffn: "idf \in \{0..<size E\} \rightarrow_E set_mset E"
    assumes Aefn: "\land i. i \in \{0..<size E\} \implies Ae i = \{f \in Ct2 . mono_edge f (idf i)\}"
    shows "prob_space.mutual_indep_events (uniform_count_measure (Ct2)) (Ae i) Ae
    (\{j \in \{0..<(size E)\} . (idf j \cap idf i) = \{\}\})"
```

Edge index for Ae

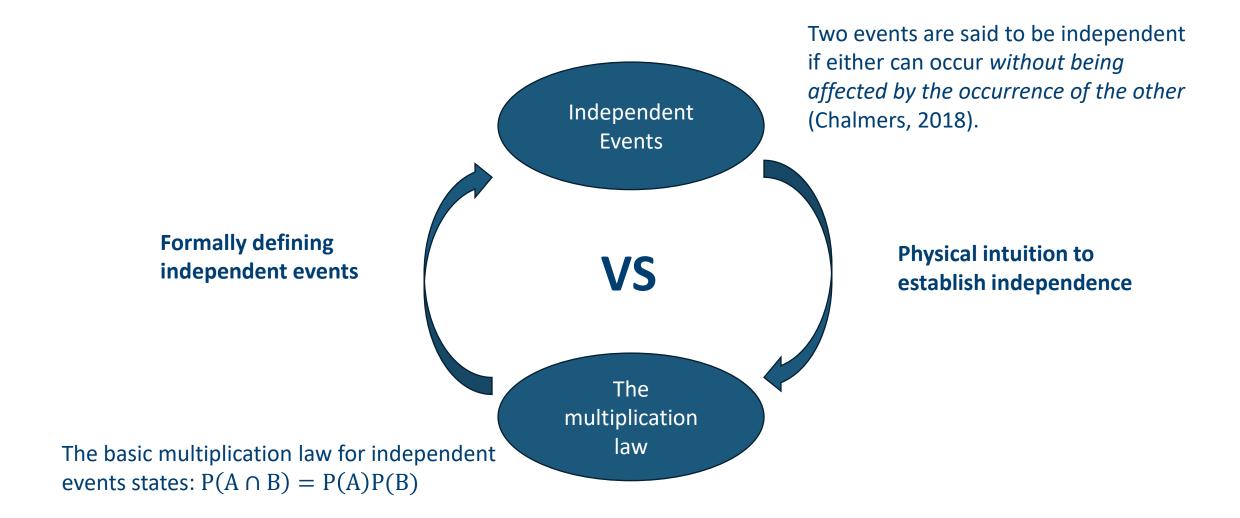
5. Formalisation Insights

Theme 1: Intuition in Probabilistic Proofs

Intuition is everywhere in probability proofs for combinatorics



Theme 1: Intuition in Probabilistic Proofs



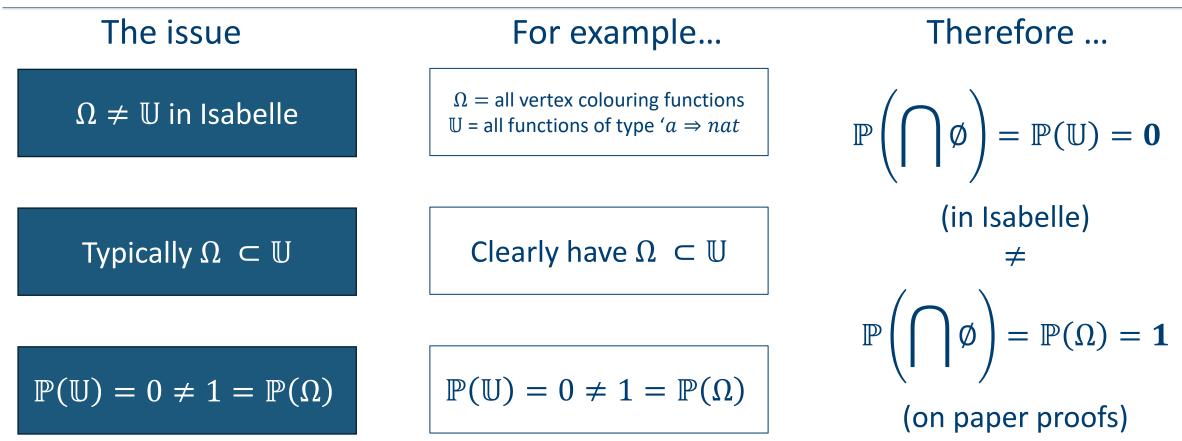
Theme 1: Intuition in Probabilistic Proofs

Clearly $\Pr[A_e] = 2^{1-n}$

- i.e. Clearly vertex colouring events are independent, so we can just apply P(AB) = P(A)P(B) right?
- BUT This is circular reasoning!
 - To establish independence, we must prove the multiplication rule holds.
 - Use a counting lemma instead on sets of functions

```
lemma prob_edge_colour:
    assumes "e ∈# E" "c ∈ {0..<n}"
    shows "prob {f ∈ C<sup>n</sup> . mono_edge_col f e c} = 1/(n powi (card e))"
proof -
    have "card {0..<n} = n" by simp
    moreover have "C<sup>n</sup> = V →<sub>E</sub> {0..<n}" using all_n_vertex_colourings_alt by blast
    moreover have "{0..<n} ≠ {0..<n}" using n_not_zero by simp
    ultimately show ?thesis using prob_uniform_ex_fun_space[of V _ "{0..<n}" e] n_not_zero
    finite_sets wellformed assms by (simp add: MU_def V_nempty mono_edge_col_def)
ged
```

Theme 2: An Isabelle Probability Library Issue



The first time in four years that simple type theory caused me issues... Solutions: pmf library for discrete results, rework probability definitions, proof work arounds

Theme 3: The importance of generality

- Modular, reusable, and extensible formal libraries
- Reducing duplication in formal libraries
- This work's general framework -> successfully minimised rework.
 - Interesting new use case of Isabelle's locales.
- General efforts -> formalise new proofs more naturally.
- Balance **practicality** vs **generality** for ultimate **usability**

Concluding Thoughts

- Key contributions:
 - Significant expansions to probability and hypergraph libraries in Isabelle/HOL, including the LLL.
 - The general framework from the probabilistic method
 - Formal proof of the "Mutual independence principle" (for hypergraphs).
 - Applications: formalised several bounds on hypergraph colourings.
- Key lessons:
 - Generalisation is both possible & important in formalisation, particularly as formal mathematical libraries grow at a rapid pace! The up-front time investment is worth it.
 - Several insights into the mathematical intuition around probabilistic proofs.

Concluding Thoughts

- Other Applications?
 - Already some success with simplifying Balog-Szemeredi-Gowers proof
- Paper published at CPP2024: <u>https://dl.acm.org/doi/10.1145/3636501.3636946</u>
- Full AFP Formalisations available online:
 - <u>https://www.isa-afp.org/entries/Hypergraph_Basics.html</u>
 - <u>https://www.isa-afp.org/entries/Lovasz_Local.html</u>
 - <u>https://www.isa-afp.org/entries/Hypergraph_Colourings.html</u>

Contact: c.l.edmonds@sheffield.ac.uk | cledmonds.github.io