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Overview

• Motivation: formalising maths, techniques vs theorems, the probabilistic method

• What we did: 

i. Combinatorial structure extensions

ii. A general framework: probabilistic spaces for combinatorial structures

iii. Probability library extensions, including the Lovász local lemma 

iv. A sample application: Hypergraph Colourings

• What we learnt: 

• Formalisation insights: modularity, locale techniques etc

• Mathematical insights: circular reasoning in human intuition



1. The Motivating Problem



The Probabilistic Method - Why Formalise?

• Interest in formalised maths has grown significantly 

• Only three pre-existing formalisations which use the probabilistic method in 

combinatorics  -> focused on theorems not general techniques.

• Predominance of method in modern combinatorics research motivated by applications  

-> how can we make it easier to formalise future work?

The Probabilistic Method is one of the most powerful and widely used tools applied in 

combinatorics (Alon & Spencer, 2015).



What is the Probabilistic Method?

Key Idea

Given a probability space over 
some combinatorial structure…

Show the structure has the 
desired properties with positive 

probability.
(May be via complement)

Techniques

Basic 
Probability 

Tricks

Linearity of 
Expectation

Alterations

Second 
Moment 
Method

The Local 
Lemma

Quasi-
randomness

Poisson 
Paradigm

Correlation 
Inequalities

Martin-
gales

Alon & Spencer. (2004). 
The Probabilistic Method.
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Hypergraph Colourings.
• A hypergraph (V, E), where E is a collection of subsets of V of any size, is “colourable” if 

there is a vertex colouring such that no edge is monochromatic.

2- colourable 3-uniform w/ 4 edges Not 2- colourable 3-uniform w/ 7 edges



A Basic Proof
The Probabilistic Method: 

Prove existence by showing a structure has a desired property with probability > 0

(or avoids bad properties with probability < 1)



Isabelle/HOL

• Simple type theory

• Automation: Sledgehammer

• Search tools: Query Search, Find Facts, 

SErAPIS

• The Isar structured proof language

• IDE: JEdit & VSCodium

• Libraries: Distribution & Archive of 

Formal Proofs (AFP)

• Additional features: Code generation, 

modularity, polymorphism, 

documentation generation …



2. Formally talking about Hypergraphs…



Hypergraph Structures

Set 
Families

Hypergraphs

Projective 
Planes

Designs

Graphs

The Fano Plane
Design Rep

{0, 1, 2}, {0, 3, 4}, 
{0, 5, 6}, {1, 3, 5}, 
{1, 4, 6}, {2, 3, 6}, 

{2, 4, 5}

CHALLENGE 1

• Many combinatorial structures have the same underlying 

definition.

BUT

• Different languages/concepts/intuition

• Complex inheritance patterns

• Inconsistencies in definitions



Locales Basics
• Locales are Isabelle’s module system. From a logical perspective, they are 

simply persistent contexts. 

ٿ 𝑥1 … 𝑥𝑛. 𝐴1; … ; 𝐴𝑚 ⇒ 𝐶. 

• A simple example for combinatorics:

Parameters

Assumptions

Notation



Locales Basics – Inheritance and Interpretations
• We have direct inheritance

• And indirect inheritance (rewriting optional)

• Interpretations (global & local)



Designs to Hypergraphs

Locales let us reuse lemmas, theorems, and definitions from prior 

combinatorial structure formalisations



2. A General Probabilistic Framework



A Basic Proof
The Probabilistic Method: 

Prove existence by showing a structure has a desired property with probability > 0

(or avoids bad properties with probability < 1)



Identified Formalisation Challenges

• Reliance on human intuition

• Complex calculations

• Set up involved

• Definitions and notation

A first attempt at formalising a proof written in 1 line on paper!



Identified Formalisation Challenges

How can we:

• Shorten the formal proof (mirroring 

natural proof)

• Generalise techniques used 

(formally)

• Avoid ‘hacking’ in future similar 

proofs

A first attempt at formalising a proof written in 1 line on paper!



The 
Basic 

Method

1. Introduce randomness to the 
problem domain

2. Identify the desired 
properties/properties to avoid

3. Show object has desired 
properties with P > 0

4. In a finite space, there must 
then be an element of the 
space with the property!



Applying 
the 

Method

1. Colour a graph with 2 colours 
randomly

2. Property: colouring results in no 
edges being monochromatic.

3. Show the complement: 
probability of all edges being 
monochromatic < 1

4. P(A) = 1 – (¬A). Positive 
probability, and exemplar 
colouring can be obtained.

Goal: Prove that every k-uniform hypergraph 
with fewer than 2^k-1 edges is 2-colourable



Formalisation Framework - Summary

Formal Framework

1. Define a probability space

2. Define object properties

3. Calculate probability bounds

4. Obtain exemplar object

Traditional Framework

1. Introduce randomness to the 
Problem Domain

2. Identify the desired 
properties/properties to avoid

3. Show object has desired 
properties with P > 0

4. In a finite space, there must 
then be an element of the 
space with the property!



The Formalisation Framework – Step 1
To “introduce randomness” we must define a probability space 

Ω, ℱ, 𝑃  formally

Define the 
measure

Define the 
prob space

Useful 
lemmas

Can we generalise?



The Formalisation Framework – Step 1
To “introduce randomness” we must define a probability space 

Ω, ℱ, 𝑃  formally

Define the 
measure

Define the 
prob space

Useful 
lemmas

Can we generalise?

Local definitions?



The Formalisation Framework – Step 1 General!

Sublocale 
relationship

Parameter 
rewrites



Application: A Vertex Colouring Space Example



Application: A Vertex Colouring Space Example

Locale context contains general lemmas on vertex colourings for any future applications of 
the probabilistic method to colourings!



The Formalisation Framework – Step 3
• The Union bound:

• The Complete Independence Bound

Lemma “lifted” from measure theory 
libraries

New formalisation which uses 
measure theory basics.



The Formalisation Framework – Step 4
• Obtaining an object from a probability!

• Some basic rules

• Combining steps 3 & 4!



3. More Probability Extensions 
(The Lovász Local Lemma (LLL))



LLL Background – Step 3
Given a set of bad events: 𝐴 = 𝐴1, 𝐴2, … , 𝐴𝑛 ,  to avoid ℙ 𝑖=1ځ

𝑛 𝐴𝑖 > 0

ℙ ሩ

𝑖=1

𝑛

𝐴𝑖 > 0

ℙ 𝐴𝑖 < 1
ℙ 𝐴𝑖 < 𝑥𝑖 ෑ

𝑗 ∈𝑁[𝑖]

(1 − 𝑥𝑗)

𝑥𝑖 ∈ (0,1)

N[i] = set of events 𝐴𝑖  is 
mutually independent of 

Complete Independence 
Bound

Lovász Local Lemma 
(Mutual Independence)

All 𝐴𝑖 are independent

∴ P 𝐴𝑖 ∩ 𝐴𝑗 = P 𝐴𝑖 P(𝐴𝑗) 
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An event A is mutually independent of a set S if for any 𝑇 ⊆ 𝑆,  
ℙ 𝐴 = 𝑃 𝐴 𝑇)



LLL Formal Theorem Statement – Step 3



LLL Formal Theorem Statement – Step 3
A1

A2

A3

A4

C1

C2

A1

A2

A2

A3

A4

C1 C2



LLL Paper Proof Sketch – Step 3

General LLL 
(Dep Graph)

General LLL 
(Mutual Event Set)

LLL Helper 
(Base Step)



LLL Paper Proof Sketch – Step 3

General LLL 
(Dep Graph)

Symmetric LLL 
(Mutual Event Set)

LLL Helper 
(Base Step)



LLL Formal Proof Sketch – Step 3

General LLL 
(Dep Graph)

Symmetric LLL 
(Dep Graph)

General LLL 
(Mutual Event Set)

Symmetric LLL 
(Mutual Event Set)

LLL Helper 
(Base Step)

LLL Helper 
(Inductive Step)

Probability 
Library 

Extensions

Obtain 
set from 

graph

Dependency 
Graph 

Extensions

Hidden 
Induction 

Proof

Induction Proof

UNIV Set issue



LLL Symmetric – Step 3



5. Applications



Application: Defining Hypergraph Colourings



Application: A Vertex Colouring Space Example

Locale contexts contain general lemmas on useful probability calculations for 
vertex colourings



Application: The basic method



Application: the basic method



Application: A more advanced bound

More advanced, but smaller proof?

n-uniform hypergraph Hypergraph w/ edge conditions

Lovász Local Lemma
Union Bound



Application: A more advanced bound

… (5 lines)



Application: A more advanced bound

… (5 lines)

+ Mutual Independence Principle!!!



Mutual Independence Principle

Edge index for Ae

Edge index for Ae



5. Formalisation Insights



Theme 1: Intuition in Probabilistic Proofs

Intuition is everywhere in probability proofs for combinatorics

Introducing Randomness “Obtaining” an 
exemplar structure

Many calculation 
specific examples

General framework = partial solution



Theme 1: Intuition in Probabilistic Proofs

Independent 
Events

The 
multiplication 

law

Two events are said to be independent 
if either can occur without being 
affected by the occurrence of the other 
(Chalmers, 2018).

The basic multiplication law for independent 
events states: P A ∩ B = P A P(B)

Formally defining 
independent events

Physical intuition to 
establish independenceVS



Theme 1: Intuition in Probabilistic Proofs
Clearly 𝐏𝐫 𝑨𝒆 = 𝟐𝟏−𝒏

• i.e. Clearly vertex colouring events are independent, so we can just apply P(AB) = P(A)P(B) right?

•  BUT - This is circular reasoning! 

• To establish independence, we must prove the multiplication rule holds. 

• Use a counting lemma instead on sets of functions



Theme 2: An Isabelle Probability Library Issue
The issue     For example…                        Therefore …

The first time in four years that simple type theory caused me issues…

Solutions: pmf library for discrete results, rework probability definitions, proof work arounds

Ω ≠ 𝕌 in Isabelle

Typically Ω ⊂ 𝕌

ℙ 𝕌 = 0 ≠ 1 = ℙ Ω

Ω = all vertex colouring functions
𝕌 = all functions of type ‘𝑎 ⇒ 𝑛𝑎𝑡 

Clearly have Ω ⊂ 𝕌

ℙ 𝕌 = 0 ≠ 1 = ℙ Ω

ℙ ሩ ∅ = ℙ 𝕌 = 𝟎

(in Isabelle)
≠

(on paper proofs)

ℙ ሩ ∅ = ℙ Ω = 𝟏



Theme 3: The importance of generality

• Modular, reusable, and extensible formal libraries

• Reducing duplication in formal libraries

• This work’s general framework -> successfully minimised rework.

• Interesting new use case of Isabelle’s locales.

• General efforts -> formalise new proofs more naturally.

• Balance practicality vs generality for ultimate usability



Concluding Thoughts

• Key contributions:

• Significant expansions to probability and hypergraph libraries in Isabelle/HOL, including the LLL.

• The general framework from the probabilistic method

• Formal proof of the “Mutual independence principle” (for hypergraphs).

• Applications: formalised several bounds on hypergraph colourings.

• Key lessons: 

• Generalisation is both possible & important in formalisation, particularly as formal mathematical 

libraries grow at a rapid pace! The up-front time investment is worth it.

• Several insights into the mathematical intuition around probabilistic proofs. 



Concluding Thoughts

• Other Applications?

• Already some success with simplifying Balog-Szemeredi-Gowers proof

• Paper published at CPP2024: https://dl.acm.org/doi/10.1145/3636501.3636946

• Full AFP Formalisations available online:

• https://www.isa-afp.org/entries/Hypergraph_Basics.html

• https://www.isa-afp.org/entries/Lovasz_Local.html

• https://www.isa-afp.org/entries/Hypergraph_Colourings.html

Contact: c.l.edmonds@sheffield.ac.uk | cledmonds.github.io

https://dl.acm.org/doi/10.1145/3636501.3636946
https://www.isa-afp.org/entries/Hypergraph_Basics.html
https://www.isa-afp.org/entries/Lovasz_Local.html
https://www.isa-afp.org/entries/Hypergraph_Colourings.html
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