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Marking Student Programs

C Programming Course in Nagoya

• ±70 students every year (of whom 60 active)

• 3 programming exercises every week

• =⇒ 180+ exercises to grade every week for a full semester

• student programs can be horrible
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Example Assignment

Exercise: write a function that calculates Σn
k=1k.
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Example Homework Solutions

int sum(int x) {
int i = 0, z = 0;
for (i = 0; i <= x; i++)

z += i;
return z;
}
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Example Homework Solutions

int sum( int n ){
if(n < 0){

return 0;
}
int cnt;
int data = 0;
for(cnt = 0;cnt <= n;cnt++){

data = data + cnt;
}
return data;

}
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Example Homework Solutions

int sum(int n)
{
if ( n<=0 ) {

return 0;
} else {
return (n*(n+1)/2);
}

}
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Example Homework Solutions

int sum(int x) {
int i, j, z;
z = 0;
for (i = 0; i <= x; i++)

for (j = 0; j < i; j++)
z++;

return z;
}
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Solving the Problem

Solutions

• hire some teaching assistants!

• automate the marking
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Solving the Problem

Automated Program Testing

• run automatic tests
• prove that programs are correct!

• we love to play with term rewriting
• ⇒ convert C programs to term rewriting systems!
• ⇒ reason about those TRSs instead!
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What’s Term Rewriting?

Syntactic approach for reasoning in equational first-order logic

Core functional programming language without many restrictions
(and features) of “real” FP:

• first-order (usually)

• no fixed evaluation strategy

• no fixed order of rules to apply (Haskell: top to bottom)

• untyped

• no pre-defined data structures (integers, arrays, . . .)
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Summing up Natural Numbers

Numbers: 0, s(0), s(s(0)), . . .

Rules:
sum(0) → 0

sum(s(x)) → plus(s(x), sum(x))
plus(0, y) → y

plus(s(x), y) → s(plus(x, y))

Then e.g. we can compute 1 + 1 = 2 as

plus(s(0), s(0))→R s(plus(0, s(0)))→R s(s(0))

Integer arithmetic possible with more complex recursive rules.

But: Want to do program analysis. Really throw away domain
knowledge about built-in data structures?!
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What’s Constrained Term Rewriting?

Term rewriting “with batteries included”

• first-order

• no fixed evaluation strategy

• no fixed order of rules to apply

• typed

• with pre-defined data structures (integers, arrays, bitvectors, ...),
usually from SMT-LIB theories (SMT: SAT Modulo Theories)

• rewrite rules with SMT constraints

⇒ Term rewriting + SMT solving for automated reasoning
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Examples

Integer Summation

sum(x) → 0 [x ≤ 0]
sum(x) → x+ sum(x− 1) [x > 0]

sum(2)

→ 2 + sum(2− 1)
→ 2 + sum(1)
→ 2 + (1 + sum(1− 1))
→ 2 + (1 + sum(0))
→ 2 + (1 + 0)
→ 2 + 1
→ 3
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Examples

Integer Summation

sum(x) → 0 [x ≤ 0]
sum(x) → x+ sum(x− 1) [x > 0]

• Fterms = {sum} ∪ {n | n ∈ Z}
• Ftheory =

{+,−,≥, >,∧, true, false} ∪ {n | n ∈ Z}
• Values: true, false, 0, 1, 2, 3, . . . ,−1,−2, . . .

• Interpretation: addition, minus, etc.
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Examples

Bitvector Summation

sum(x) → 0 [x ≤ 0]
sum(x) → x+ sum(x− 1) [x > 0]

• Fterms = {sum} ∪ {n | n ∈ Z ∧ 0 ≤ n < 256}
• Ftheory =

{+,−,≥, >,∧, true, false}∪ {n | n ∈ Z∧ 0 ≤ n < 256}
• Values: true, false, 0, 1, 2, 3, . . . , 255

• Interpretation: addition, minus, etc. modulo 256
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Examples

Array Summation

sum(a, x) → 0 [x < 0]
sum(a, x) → select(a, x) + sum(a, x− 1) [x ≥ 0]

• Fterms = {sum} ∪ {n : int | n ∈ Z} ∪ {a : iarr | n ∈ Z∗}
• Ftheory =

{+,−,≥, >,∧, select, true, false} ∪ {n | n ∈ Z} ∪
{a : iarr | a ∈ Z∗}

• Values:
true, false, 0, 1,−1, 2,−2, . . . , (), (0), (1), . . . , (0, 0), . . .
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Summary

Logically Constrained Term Rewriting Systems
[Kop and Nishida, 2013]

• work much like normal term rewrite systems

• can handle integers, arrays, bitvectors, ...

• are flexible enough to faithfully model (many) real-world
programs
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Simple Integer Functions

Factorial

int fact(int x) {
int z = 1;
for (int i = 1; i <= x; i++)

z *= i;
return z;
}

fact(x) → u1(x)
u1(x) → u2(x, 1, 1)

u2(x, z, i) → u3(x, z, i) [i ≤ x]
u2(x, z, i) → u4(x, z, i) [¬(i ≤ x)]
u3(x, z, i) → u2(x, z ∗ i, i+ 1)
u4(x, z, i) → z
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Simple Integer Functions

Factorial

int fact(int x) {
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return z;
}

fact(x) → u2(x, 1, 1)
u2(x, z, i) → u2(x, z ∗ i, i+ 1) [i ≤ x]
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Error Checking

Division by Zero

boolean divides(int x, int y) {
return x % y == 0;

}

divides(x, y) → return(x mod y = 0)

[y 6= 0]
divides(x, y) → error [y = 0]
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Error Checking

Integer Overflow

int fact(int x) {
int z = 1;
for (int i = 1; i <= x; i++)

z *= i;
return z;
}

fact(x) → u2(x, 1, 1)
u2(x, z, i) → u2(x, z ∗ i, i+ 1)[i ≤ x]

∧ z ∗ i < 256 ∧ i+ 1 < 256

u2(x, z, i) → return(z) [¬(i ≤ x)]
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Further Extensions

Further Extensions

Can also handle

• Recursion

• Global variables

• Mutable arrays (with built-in size function)
→ can represent memory safety violation
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Goal

What is Equivalence for LCTRSs?

Teacher’s code:

sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]

Student’s code:

sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]

Query: sum1(x)↔∗ sum2(x) for all x?
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Goal

Rewriting Induction

Given:

• set E of equations s1 ≈ t1 [ϕ1], . . . , sn ≈ tn [ϕn]

• set of rewrite rules R

Want to prove:
for all constructor ground substitutions γ1, . . . , γn compatible with
ϕ1, . . . , ϕn: each siγi ↔∗R tiγi.

Requirements:

• termination of →R (to perform induction)

• sufficient completeness of →R: evaluation “cannot get stuck”
(for case analysis over variables by constructor terms)

• if we want siγi ↔∗ tiγi for all results: confluence of →R
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Approach

Rewriting Induction

Three sets:

• E (equations, “the queries”)

• R (rules, “the program”)

• H (rules, “induction hypotheses”)

Initially: E given, R given, H empty

Proof steps: pairs (E ,H) ` (E ′,H′) by several inference rules for `
Invariant: →R∪H terminating

Goal: find derivation (E , ∅) `∗ (∅,H)

Then also ↔∗E ⊆ ↔∗R∪H ⊆ ↔∗R on ground terms:

Equations E are inductive theorems for R
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Rewriting Induction Rules

Simplification: definition

(E ] {s ' t [ϕ]},H)
(E ∪ {s′ ≈ t [ψ]},H)

if s ≈ t [ϕ] →R∪H s′ ≈ t [ψ]

Idea: Use the program or an induction hypothesis to simplify the
query.
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Rewriting Induction Rules

Simplification: example

R =


sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]
sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]


(E ] {u(x, y, z) ≈ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1]

},H)
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Rewriting Induction Rules

Expansion: definition

(E ] {s ' t [ϕ]},H)
(E ∪ Expd(s ≈ t [ϕ], p),H ∪ {s→ t [ϕ]})

if for every γ compatible with ϕ, s|p reduces and
R∪H ∪ {s→ t [ϕ]} is terminating

Expd(C[l′]p ≈ t [ϕ], p) contains equations C[rγ]p ≈ tγ [ϕγ ∧ ψγ]
for all l→ r [ψ] in R where l and l′ unify with most general unifier γ

Idea: Exhaustive case analysis, generate induction hypothesis.
(Closely related: narrowing.)
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Rewriting Induction Rules

Expansion: example
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u(x, i, z) → z [¬(i ≤ x)]


(E ] {u(x, y′, z′) ≈ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1

∧ y′ = y + 1 ∧ z′ = z + y]},H)
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,H ∪ {u(x, y′, z′)→ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1
∧ y′ = y + 1 ∧ z′ = z + y]})
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Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

Deletion: definition

(E ] {s ' t [ϕ]},H)
(E ,H)

if s ≡ t or ϕ is unsatisfiable

Idea: Delete trivial inductive theorems.
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Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

EQ-Deletion: definition

(E ] {C[s1, . . . , sn] ≈ C[t1, . . . , tn] [ϕ]},H)
(E ∪ {C[~s] ≈ C[~t] [ϕ ∧ ¬

∧n
i=1(si = ti)]},H)

if s1, . . . , sn, t1, . . . , tn all logical terms

Idea: If all arguments to the same context become equal, we’re done.
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Rewriting Induction Rules

Postulate: definition

(E ,H)
(E ] {s ≈ t [ϕ]},H)

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 38 / 48



Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

Postulate: example

R:
sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]
sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]

Goal:

( {sum1(x) ≈ sum2(x) [>]}, ∅ )

u(x, y, z) ≈ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 39 / 48



Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

Postulate: example

R:
sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]
sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]

Goal:

( {sum1(x) ≈ sum2(x) [>],
u(x, y, z) ≈ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1
∧y′ = y + 1 ∧ z′ = z + y]}, ∅ )

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 39 / 48



Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

Postulate: example

R:
sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]
sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]

Goal:

( {sum1(x) ≈ sum2(x) [>]},
{u(x, y′, z′)→ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1
∧y′ = y + 1 ∧ z′ = z + y]} )

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 39 / 48



Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Overview

1 Motivation

2 Constrained Term Rewriting

3 Transforming C Programs

4 Rewriting Induction

5 Lemma Generation

6 Conclusions

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 40 / 48



Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Divergence

What Typically Happens

1. sum1(x) → 0 [x ≤ 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, 0, 0)
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]

H1 sum1(x) → u(x, 0, 0) [>]
H2 u(x, 1, 0) → x+ u(x′, 0, 0) [x > 0 ∧ x′ = x− 1]

Goals:
sum1(x) ≈ sum2(x) [>]
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Generalisation Method

Use Different Notation!

1. sum1(x) → 0 [x ≤ 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, 0, 0)
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]

H1 sum1(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]

Goals:

Generalisation: Drop initialisations

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 43 / 48



Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Generalisation Method

Use Different Notation!

1. sum1(x) → c0 [x ≤ 0 ∧ c0 = 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]

H1 sum1(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]

Goals:

Generalisation: Drop initialisations

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 43 / 48



Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Generalisation Method

Use Different Notation!

1. sum1(x) → c0 [x ≤ 0 ∧ c0 = 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]

H1 sum1(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]

Goals:
sum1(x) ≈ sum2(x) [>]

Generalisation: Drop initialisations

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 43 / 48



Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Generalisation Method

Use Different Notation!

1. sum1(x) → c0 [x ≤ 0 ∧ c0 = 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]

H1 sum1(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]

Goals:
sum1(x) ≈ u(x, c1, c2) [c1 = 0 ∧ c2 = 0]

Generalisation: Drop initialisations

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 43 / 48



Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Generalisation Method

Use Different Notation!

1. sum1(x) → c0 [x ≤ 0 ∧ c0 = 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]
H1 sum1(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]

Goals:
x+ sum1(x− 1) ≈ u(x, c1, c2) [c1 = 0 ∧ c2 = 0 ∧ x > 0]
c0 ≈ u(x, c1, c2) [c1 = 0 ∧ c2 = 0 ∧ x ≤ 0 ∧ c0 = 0]

Generalisation: Drop initialisations

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 43 / 48



Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Generalisation Method

Use Different Notation!

1. sum1(x) → c0 [x ≤ 0 ∧ c0 = 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]
H1 sum1(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]

Goals:
x+ sum1(x− 1) ≈ u(x, c1, c2) [c1 = 0 ∧ c2 = 0 ∧ x > 0]

Generalisation: Drop initialisations

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 43 / 48



Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Generalisation Method

Use Different Notation!

1. sum1(x) → c0 [x ≤ 0 ∧ c0 = 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]
H1 sum1(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]

Goals:
x+ sum1(x− 1) ≈ u(x, c1 + 1, c2 + c1) [c1 = 0 ∧ c2 = 0 ∧ x > 0]

Generalisation: Drop initialisations

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 43 / 48



Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Generalisation Method

Use Different Notation!

1. sum1(x) → c0 [x ≤ 0 ∧ c0 = 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]
H1 sum1(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]

Goals:
x+ sum1(x

′) ≈ u(x, i, z) [c1 = 0 ∧ c2 = 0 ∧ x > 0 ∧ x′ =
x− 1 ∧ i = c1 + 1 ∧ z = c1 + c2]

Generalisation: Drop initialisations

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 43 / 48



Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Generalisation Method

Use Different Notation!

1. sum1(x) → c0 [x ≤ 0 ∧ c0 = 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]
H1 sum1(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]

Goals:
x+ u(x′, c1, c2) ≈ u(x, i, z) [c1 = 0 ∧ c2 = 0 ∧ x > 0 ∧ x′ =
x− 1 ∧ i = c1 + 1 ∧ z = c1 + c2]

Generalisation: Drop initialisations

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 43 / 48



Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Generalisation Method

Use Different Notation!

1. sum1(x) → c0 [x ≤ 0 ∧ c0 = 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]
H1 sum1(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]

Goals:
x+ u(x′, c1, c2) ≈ u(x, i, z) [c1 = 0 ∧ c2 = 0 ∧ x > 0 ∧ x′ =
x− 1 ∧ i = c1 + 1 ∧ z = c1 + c2]

Generalisation: Drop initialisations

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 43 / 48



Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Generalisation Method

Use Different Notation!

1. sum1(x) → c0 [x ≤ 0 ∧ c0 = 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]
H1 sum1(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]

Goals:
x+ u(x′, c1, c2) ≈ u(x, i, z) [

c1 = 0 ∧ c2 = 0 ∧

x > 0 ∧ x′ =
x− 1 ∧ i = c1 + 1 ∧ z = c1 + c2]

Generalisation: Drop initialisations

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 43 / 48



Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Overview

1 Motivation

2 Constrained Term Rewriting

3 Transforming C Programs

4 Rewriting Induction

5 Lemma Generation

6 Conclusions

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 44 / 48



Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

What was already there?

Shoulders of Giants

• various kinds of constrained rewriting
(But: most were fundamentally limited to the integers)

• long history of unconstrained rewriting induction, e.g.
[Reddy 1990]
(But: lemma generation methods do not obviously extend)

• rewriting induction for a form of constrained rewriting
(But: only very complex and relatively weak lemma
generation)
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Contributions

Implementation and Experiments

• C2LCTRS: automatic tool to translate C programs to LCTRSs
http://www.trs.cm.is.nagoya-u.ac.jp/c2lctrs/
• Ctrl: automatic tool to prove equivalence of LCTRS functions
http://cl-informatik.uibk.ac.at/software/ctrl/

function YES NO MAYBE time
sum 9 0 4 2.4
fib 4 6 3 6.6

sumfrom 3 1 2 1.9
strlen 1 0 5 7.2
strcpy 3 0 3 11.5
arrsum 1 0 0 4.2
fact 1 0 0 2.4

literature 4 3 18 4.0
safety 3 2 7 22.3

total 29 12 44

Experiments with student code
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Implementation and Experiments
• C2LCTRS: automatic tool to translate C programs to LCTRSs
http://www.trs.cm.is.nagoya-u.ac.jp/c2lctrs/
• Ctrl: automatic tool to prove equivalence of LCTRS functions
http://cl-informatik.uibk.ac.at/software/ctrl/

function YES NO MAYBE time
sum 9 0 4 2.2
fib 10 1 2 5.9

sumfrom 3 0 3 2.3
strlen 2 0 4 6.0
strcpy 5 0 1 14.1
arrsum 1 0 0 4.2
fact 1 0 0 2.5

literature 5 2 18 3.9
safety 3 2 7 22.3

total 39 5 41

Experiments with student code and adapted specs
(ignoring boundary cases like negative input)
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Contributions

Conclusion
• Logically Constrained Term Rewrite Systems

for automated reasoning and program analysis

• Equivalence-preserving frontend to translate
from C fragment on integers, arrays, ... to LCTRSs

• Constrained rewriting induction to prove equivalence of
functions defined by LCTRSs

• Lemma generation technique suited to problems from
imperative programs (second technique in the paper)

• Paper:

Carsten Fuhs, Cynthia Kop, Naoki Nishida
Verifying Procedural Programs via Constrained Rewriting
Induction
ACM Transactions on Computational Logic 18(2): 14:1-14:50
(2017)
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