
Proving Equivalence of Imperative Programs
via

Constrained Rewriting Induction

Carsten Fuhs (Birkbeck, University of London)

joint work with

Cynthia Kop (RU Nijmegen) and Naoki Nishida (U Nagoya)

Proof Systems for Mathematics and Verification
EPFL, Lausanne

15 June 2024

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Overview

1 Motivation

2 Constrained Term Rewriting

3 Transforming C Programs

4 Rewriting Induction

5 Lemma Generation

6 Conclusions

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 2 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Overview

1 Motivation

2 Constrained Term Rewriting

3 Transforming C Programs

4 Rewriting Induction

5 Lemma Generation

6 Conclusions

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 3 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Marking Student Programs

C Programming Course in Nagoya

• ±70 students every year (of whom 60 active)

• 3 programming exercises every week

• =⇒ 180+ exercises to grade every week for a full semester

• student programs can be horrible

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 4 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Marking Student Programs

C Programming Course in Nagoya
• ±70 students every year (of whom 60 active)

• 3 programming exercises every week

• =⇒ 180+ exercises to grade every week for a full semester

• student programs can be horrible

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 4 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Example Assignment

Exercise: write a function that calculates Σn
k=1k.

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 5 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Example Homework Solutions

int sum(int x) {
int i = 0, z = 0;
for (i = 0; i <= x; i++)

z += i;
return z;
}

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 6 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Example Homework Solutions

int sum(int n){
if(n < 0){

return 0;
}
int cnt;
int data = 0;
for(cnt = 0;cnt <= n;cnt++){

data = data + cnt;
}
return data;

}

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 7 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Example Homework Solutions

int sum(int n)
{
if (n<=0) {

return 0;
} else {
return (n*(n+1)/2);
}

}

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 8 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Example Homework Solutions

int sum(int x) {
int i, j, z;
z = 0;
for (i = 0; i <= x; i++)

for (j = 0; j < i; j++)
z++;

return z;
}

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 9 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Solving the Problem

Solutions

• hire some teaching assistants!

• automate the marking

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 10 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Solving the Problem

Solutions
• hire some teaching assistants!

• automate the marking

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 10 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Solving the Problem

Solutions
• hire some teaching assistants!

• automate the marking

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 10 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Solving the Problem

Solutions
• hire some teaching assistants!

• automate the marking

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 10 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Solving the Problem

Automated Program Testing

• run automatic tests
• prove that programs are correct!

• we love to play with term rewriting
• ⇒ convert C programs to term rewriting systems!
• ⇒ reason about those TRSs instead!

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 11 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Solving the Problem

Automated Program Testing
• run automatic tests

• prove that programs are correct!
• we love to play with term rewriting
• ⇒ convert C programs to term rewriting systems!
• ⇒ reason about those TRSs instead!

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 11 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Solving the Problem

Automated Program Testing
• run automatic tests
• prove that programs are correct!

• we love to play with term rewriting
• ⇒ convert C programs to term rewriting systems!
• ⇒ reason about those TRSs instead!

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 11 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Solving the Problem

Automated Program Testing
• run automatic tests
• prove that programs are correct!

• we love to play with term rewriting
• ⇒ convert C programs to term rewriting systems!
• ⇒ reason about those TRSs instead!

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 11 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Solving the Problem

Automated Program Testing
• run automatic tests
• prove that programs are correct!

• we love to play with term rewriting

• ⇒ convert C programs to term rewriting systems!
• ⇒ reason about those TRSs instead!

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 11 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Solving the Problem

Automated Program Testing
• run automatic tests
• prove that programs are correct!

• we love to play with term rewriting
• ⇒ convert C programs to term rewriting systems!

• ⇒ reason about those TRSs instead!

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 11 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Solving the Problem

Automated Program Testing
• run automatic tests
• prove that programs are correct!

• we love to play with term rewriting
• ⇒ convert C programs to term rewriting systems!
• ⇒ reason about those TRSs instead!

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 11 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Overview

1 Motivation

2 Constrained Term Rewriting

3 Transforming C Programs

4 Rewriting Induction

5 Lemma Generation

6 Conclusions

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 12 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

What’s Term Rewriting?

Syntactic approach for reasoning in equational first-order logic

Core functional programming language without many restrictions
(and features) of “real” FP:

• first-order (usually)

• no fixed evaluation strategy

• no fixed order of rules to apply (Haskell: top to bottom)

• untyped

• no pre-defined data structures (integers, arrays, . . .)

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 13 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

What’s Term Rewriting?

Syntactic approach for reasoning in equational first-order logic

Core functional programming language without many restrictions
(and features) of “real” FP:

• first-order (usually)

• no fixed evaluation strategy

• no fixed order of rules to apply (Haskell: top to bottom)

• untyped

• no pre-defined data structures (integers, arrays, . . .)

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 13 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

What’s Term Rewriting?

Syntactic approach for reasoning in equational first-order logic

Core functional programming language without many restrictions
(and features) of “real” FP:

• first-order (usually)

• no fixed evaluation strategy

• no fixed order of rules to apply (Haskell: top to bottom)

• untyped

• no pre-defined data structures (integers, arrays, . . .)

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 13 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

What’s Term Rewriting?

Syntactic approach for reasoning in equational first-order logic

Core functional programming language without many restrictions
(and features) of “real” FP:

• first-order (usually)

• no fixed evaluation strategy

• no fixed order of rules to apply (Haskell: top to bottom)

• untyped

• no pre-defined data structures (integers, arrays, . . .)

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 13 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Summing up Natural Numbers

Numbers: 0, s(0), s(s(0)), . . .

Rules:
sum(0) → 0

sum(s(x)) → plus(s(x), sum(x))
plus(0, y) → y

plus(s(x), y) → s(plus(x, y))

Then e.g. we can compute 1 + 1 = 2 as

plus(s(0), s(0))→R s(plus(0, s(0)))→R s(s(0))

Integer arithmetic possible with more complex recursive rules.

But: Want to do program analysis. Really throw away domain
knowledge about built-in data structures?!

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 14 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Summing up Natural Numbers

Numbers: 0, s(0), s(s(0)), . . .

Rules:
sum(0) → 0

sum(s(x)) → plus(s(x), sum(x))
plus(0, y) → y

plus(s(x), y) → s(plus(x, y))

Then e.g. we can compute 1 + 1 = 2 as

plus(s(0), s(0))→R s(plus(0, s(0)))→R s(s(0))

Integer arithmetic possible with more complex recursive rules.

But: Want to do program analysis. Really throw away domain
knowledge about built-in data structures?!

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 14 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Summing up Natural Numbers

Numbers: 0, s(0), s(s(0)), . . .

Rules:
sum(0) → 0

sum(s(x)) → plus(s(x), sum(x))
plus(0, y) → y

plus(s(x), y) → s(plus(x, y))

Then e.g. we can compute 1 + 1 = 2 as

plus(s(0), s(0))→R s(plus(0, s(0)))→R s(s(0))

Integer arithmetic possible with more complex recursive rules.

But: Want to do program analysis. Really throw away domain
knowledge about built-in data structures?!

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 14 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Summing up Natural Numbers

Numbers: 0, s(0), s(s(0)), . . .

Rules:
sum(0) → 0

sum(s(x)) → plus(s(x), sum(x))
plus(0, y) → y

plus(s(x), y) → s(plus(x, y))

Then e.g. we can compute 1 + 1 = 2 as

plus(s(0), s(0))→R s(plus(0, s(0)))→R s(s(0))

Integer arithmetic possible with more complex recursive rules.

But: Want to do program analysis. Really throw away domain
knowledge about built-in data structures?!

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 14 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Summing up Natural Numbers

Numbers: 0, s(0), s(s(0)), . . .

Rules:
sum(0) → 0

sum(s(x)) → plus(s(x), sum(x))
plus(0, y) → y

plus(s(x), y) → s(plus(x, y))

Then e.g. we can compute 1 + 1 = 2 as

plus(s(0), s(0))→R s(plus(0, s(0)))→R s(s(0))

Integer arithmetic possible with more complex recursive rules.

But: Want to do program analysis. Really throw away domain
knowledge about built-in data structures?!

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 14 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

What’s Constrained Term Rewriting?

Term rewriting “with batteries included”

• first-order

• no fixed evaluation strategy

• no fixed order of rules to apply

• typed

• with pre-defined data structures (integers, arrays, bitvectors, ...),
usually from SMT-LIB theories (SMT: SAT Modulo Theories)

• rewrite rules with SMT constraints

⇒ Term rewriting + SMT solving for automated reasoning

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 15 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

What’s Constrained Term Rewriting?

Term rewriting “with batteries included”

• first-order

• no fixed evaluation strategy

• no fixed order of rules to apply

• typed

• with pre-defined data structures (integers, arrays, bitvectors, ...),
usually from SMT-LIB theories (SMT: SAT Modulo Theories)

• rewrite rules with SMT constraints

⇒ Term rewriting + SMT solving for automated reasoning

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 15 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

What’s Constrained Term Rewriting?

Term rewriting “with batteries included”

• first-order

• no fixed evaluation strategy

• no fixed order of rules to apply

• typed

• with pre-defined data structures (integers, arrays, bitvectors, ...),
usually from SMT-LIB theories (SMT: SAT Modulo Theories)

• rewrite rules with SMT constraints

⇒ Term rewriting + SMT solving for automated reasoning

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 15 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

What’s Constrained Term Rewriting?

Term rewriting “with batteries included”

• first-order

• no fixed evaluation strategy

• no fixed order of rules to apply

• typed

• with pre-defined data structures (integers, arrays, bitvectors, ...),
usually from SMT-LIB theories (SMT: SAT Modulo Theories)

• rewrite rules with SMT constraints

⇒ Term rewriting + SMT solving for automated reasoning

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 15 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

What’s Constrained Term Rewriting?

Term rewriting “with batteries included”

• first-order

• no fixed evaluation strategy

• no fixed order of rules to apply

• typed

• with pre-defined data structures (integers, arrays, bitvectors, ...),
usually from SMT-LIB theories (SMT: SAT Modulo Theories)

• rewrite rules with SMT constraints

⇒ Term rewriting + SMT solving for automated reasoning

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 15 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Examples

Integer Summation

sum(x) → 0 [x ≤ 0]
sum(x) → x+ sum(x− 1) [x > 0]

sum(2)

→ 2 + sum(2− 1)
→ 2 + sum(1)
→ 2 + (1 + sum(1− 1))
→ 2 + (1 + sum(0))
→ 2 + (1 + 0)
→ 2 + 1
→ 3

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 16 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Examples

Integer Summation

sum(x) → 0 [x ≤ 0]
sum(x) → x+ sum(x− 1) [x > 0]

sum(2)

→ 2 + sum(2− 1)
→ 2 + sum(1)
→ 2 + (1 + sum(1− 1))
→ 2 + (1 + sum(0))
→ 2 + (1 + 0)
→ 2 + 1
→ 3

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 16 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Examples

Integer Summation

sum(x) → 0 [x ≤ 0]
sum(x) → x+ sum(x− 1) [x > 0]

sum(2)
→ 2 + sum(2− 1)

→ 2 + sum(1)
→ 2 + (1 + sum(1− 1))
→ 2 + (1 + sum(0))
→ 2 + (1 + 0)
→ 2 + 1
→ 3

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 16 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Examples

Integer Summation

sum(x) → 0 [x ≤ 0]
sum(x) → x+ sum(x− 1) [x > 0]

sum(2)
→ 2 + sum(2− 1)
→ 2 + sum(1)

→ 2 + (1 + sum(1− 1))
→ 2 + (1 + sum(0))
→ 2 + (1 + 0)
→ 2 + 1
→ 3

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 16 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Examples

Integer Summation

sum(x) → 0 [x ≤ 0]
sum(x) → x+ sum(x− 1) [x > 0]

sum(2)
→ 2 + sum(2− 1)
→ 2 + sum(1)
→ 2 + (1 + sum(1− 1))

→ 2 + (1 + sum(0))
→ 2 + (1 + 0)
→ 2 + 1
→ 3

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 16 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Examples

Integer Summation

sum(x) → 0 [x ≤ 0]
sum(x) → x+ sum(x− 1) [x > 0]

sum(2)
→ 2 + sum(2− 1)
→ 2 + sum(1)
→ 2 + (1 + sum(1− 1))
→ 2 + (1 + sum(0))

→ 2 + (1 + 0)
→ 2 + 1
→ 3

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 16 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Examples

Integer Summation

sum(x) → 0 [x ≤ 0]
sum(x) → x+ sum(x− 1) [x > 0]

sum(2)
→ 2 + sum(2− 1)
→ 2 + sum(1)
→ 2 + (1 + sum(1− 1))
→ 2 + (1 + sum(0))
→ 2 + (1 + 0)

→ 2 + 1
→ 3

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 16 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Examples

Integer Summation

sum(x) → 0 [x ≤ 0]
sum(x) → x+ sum(x− 1) [x > 0]

sum(2)
→ 2 + sum(2− 1)
→ 2 + sum(1)
→ 2 + (1 + sum(1− 1))
→ 2 + (1 + sum(0))
→ 2 + (1 + 0)
→ 2 + 1

→ 3

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 16 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Examples

Integer Summation

sum(x) → 0 [x ≤ 0]
sum(x) → x+ sum(x− 1) [x > 0]

sum(2)
→ 2 + sum(2− 1)
→ 2 + sum(1)
→ 2 + (1 + sum(1− 1))
→ 2 + (1 + sum(0))
→ 2 + (1 + 0)
→ 2 + 1
→ 3

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 16 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Examples

Integer Summation

sum(x) → 0 [x ≤ 0]
sum(x) → x+ sum(x− 1) [x > 0]

• Fterms = {sum} ∪ {n | n ∈ Z}
• Ftheory =

{+,−,≥, >,∧, true, false} ∪ {n | n ∈ Z}
• Values: true, false, 0, 1, 2, 3, . . . ,−1,−2, . . .

• Interpretation: addition, minus, etc.

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 17 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Examples

Bitvector Summation

sum(x) → 0 [x ≤ 0]
sum(x) → x+ sum(x− 1) [x > 0]

• Fterms = {sum} ∪ {n | n ∈ Z ∧ 0 ≤ n < 256}
• Ftheory =

{+,−,≥, >,∧, true, false}∪ {n | n ∈ Z∧ 0 ≤ n < 256}
• Values: true, false, 0, 1, 2, 3, . . . , 255

• Interpretation: addition, minus, etc. modulo 256

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 18 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Examples

Array Summation

sum(a, x) → 0 [x < 0]
sum(a, x) → select(a, x) + sum(a, x− 1) [x ≥ 0]

• Fterms = {sum} ∪ {n : int | n ∈ Z} ∪ {a : iarr | n ∈ Z∗}
• Ftheory =

{+,−,≥, >,∧, select, true, false} ∪ {n | n ∈ Z} ∪
{a : iarr | a ∈ Z∗}

• Values:
true, false, 0, 1,−1, 2,−2, . . . , (), (0), (1), . . . , (0, 0), . . .

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 19 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Summary

Logically Constrained Term Rewriting Systems
[Kop and Nishida, 2013]

• work much like normal term rewrite systems

• can handle integers, arrays, bitvectors, ...

• are flexible enough to faithfully model (many) real-world
programs

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 20 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Summary

Logically Constrained Term Rewriting Systems
[Kop and Nishida, 2013]

• work much like normal term rewrite systems

• can handle integers, arrays, bitvectors, ...

• are flexible enough to faithfully model (many) real-world
programs

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 20 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Summary

Logically Constrained Term Rewriting Systems
[Kop and Nishida, 2013]

• work much like normal term rewrite systems

• can handle integers, arrays, bitvectors, ...

• are flexible enough to faithfully model (many) real-world
programs

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 20 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Summary

Logically Constrained Term Rewriting Systems
[Kop and Nishida, 2013]

• work much like normal term rewrite systems

• can handle integers, arrays, bitvectors, ...

• are flexible enough to faithfully model (many) real-world
programs

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 20 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Overview

1 Motivation

2 Constrained Term Rewriting

3 Transforming C Programs

4 Rewriting Induction

5 Lemma Generation

6 Conclusions

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 21 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Simple Integer Functions

Factorial

int fact(int x) {
int z = 1;
for (int i = 1; i <= x; i++)

z *= i;
return z;
}

fact(x) → u1(x)
u1(x) → u2(x, 1, 1)

u2(x, z, i) → u3(x, z, i) [i ≤ x]
u2(x, z, i) → u4(x, z, i) [¬(i ≤ x)]
u3(x, z, i) → u2(x, z ∗ i, i+ 1)
u4(x, z, i) → z

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 22 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Simple Integer Functions

Factorial

int fact(int x) {
int z = 1;
for (int i = 1; i <= x; i++)

z *= i;
return z;
}

fact(x) → u1(x)
u1(x) → u2(x, 1, 1)

u2(x, z, i) → u3(x, z, i) [i ≤ x]
u2(x, z, i) → u4(x, z, i) [¬(i ≤ x)]
u3(x, z, i) → u2(x, z ∗ i, i+ 1)
u4(x, z, i) → z

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 22 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Simple Integer Functions

Factorial

int fact(int x) {
int z = 1;
for (int i = 1; i <= x; i++)

z *= i;
return z;
}

fact(x) → u2(x, 1, 1)
u2(x, z, i) → u2(x, z ∗ i, i+ 1) [i ≤ x]
u2(x, z, i) → z [¬(i ≤ x)]

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 22 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Simple Integer Functions

Factorial

int fact(int x) {
int z = 1;
for (int i = 1; i <= x; i++)

z *= i;
return z;
}

fact(x) → u2(x, 1, 1)
u2(x, z, i) → u2(x, z ∗ i, i+ 1) [i ≤ x]
u2(x, z, i) → return(z) [¬(i ≤ x)]

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 22 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Error Checking

Division by Zero

boolean divides(int x, int y) {
return x % y == 0;

}

divides(x, y) → return(x mod y = 0)

[y 6= 0]
divides(x, y) → error [y = 0]

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 23 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Error Checking

Division by Zero

boolean divides(int x, int y) {
return x % y == 0;

}

divides(x, y) → return(x mod y = 0)

[y 6= 0]
divides(x, y) → error [y = 0]

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 23 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Error Checking

Division by Zero

boolean divides(int x, int y) {
return x % y == 0;

}

divides(x, y) → return(x mod y = 0) [y 6= 0]
divides(x, y) → error [y = 0]

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 23 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Error Checking

Integer Overflow

int fact(int x) {
int z = 1;
for (int i = 1; i <= x; i++)

z *= i;
return z;
}

fact(x) → u2(x, 1, 1)
u2(x, z, i) → u2(x, z ∗ i, i+ 1)[i ≤ x]

∧ z ∗ i < 256 ∧ i+ 1 < 256

u2(x, z, i) → return(z) [¬(i ≤ x)]

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 24 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Error Checking

Integer Overflow

int fact(int x) {
int z = 1;
for (int i = 1; i <= x; i++)

z *= i;
return z;
}

fact(x) → u2(x, 1, 1)
u2(x, z, i) → u2(x, z ∗ i, i+ 1)[i ≤ x ∧ z ∗ i < 256 ∧ i+ 1 < 256]
u2(x, z, i) → error [i ≤ x ∧ (z ∗ i ≥ 256 ∨ i+ 1 ≥ 256)]
u2(x, z, i) → return(z) [¬(i ≤ x)]

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 24 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Further Extensions

Further Extensions

Can also handle

• Recursion

• Global variables

• Mutable arrays (with built-in size function)
→ can represent memory safety violation

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 25 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Overview

1 Motivation

2 Constrained Term Rewriting

3 Transforming C Programs

4 Rewriting Induction

5 Lemma Generation

6 Conclusions

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 26 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Goal

What is Equivalence for LCTRSs?

Teacher’s code:

sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]

Student’s code:

sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]

Query: sum1(x)↔∗ sum2(x) for all x?

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 27 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Goal

What is Equivalence for LCTRSs?

Teacher’s code:

sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]

Student’s code:

sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]

Query: sum1(x)↔∗ sum2(x) for all x?

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 27 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Goal

What is Equivalence for LCTRSs?

Teacher’s code:

sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]

Student’s code:

sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]

Query: sum1(x)↔∗ sum2(x) for all x?

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 27 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Goal

Rewriting Induction

Given:

• set E of equations s1 ≈ t1 [ϕ1], . . . , sn ≈ tn [ϕn]

• set of rewrite rules R

Want to prove:
for all constructor ground substitutions γ1, . . . , γn compatible with
ϕ1, . . . , ϕn: each siγi ↔∗R tiγi.

Requirements:

• termination of →R (to perform induction)

• sufficient completeness of →R: evaluation “cannot get stuck”
(for case analysis over variables by constructor terms)

• if we want siγi ↔∗ tiγi for all results: confluence of →R

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 28 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Goal

Rewriting Induction

Given:

• set E of equations s1 ≈ t1 [ϕ1], . . . , sn ≈ tn [ϕn]

• set of rewrite rules R

Want to prove:
for all constructor ground substitutions γ1, . . . , γn compatible with
ϕ1, . . . , ϕn: each siγi ↔∗R tiγi.

Requirements:

• termination of →R (to perform induction)

• sufficient completeness of →R: evaluation “cannot get stuck”
(for case analysis over variables by constructor terms)

• if we want siγi ↔∗ tiγi for all results: confluence of →R

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 28 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Goal

Rewriting Induction

Given:

• set E of equations s1 ≈ t1 [ϕ1], . . . , sn ≈ tn [ϕn]

• set of rewrite rules R

Want to prove:
for all constructor ground substitutions γ1, . . . , γn compatible with
ϕ1, . . . , ϕn: each siγi ↔∗R tiγi.

Requirements:

• termination of →R (to perform induction)

• sufficient completeness of →R: evaluation “cannot get stuck”
(for case analysis over variables by constructor terms)

• if we want siγi ↔∗ tiγi for all results: confluence of →R

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 28 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Goal

Rewriting Induction

Given:

• set E of equations s1 ≈ t1 [ϕ1], . . . , sn ≈ tn [ϕn]

• set of rewrite rules R

Want to prove:
for all constructor ground substitutions γ1, . . . , γn compatible with
ϕ1, . . . , ϕn: each siγi ↔∗R tiγi.

Requirements:

• termination of →R (to perform induction)

• sufficient completeness of →R: evaluation “cannot get stuck”
(for case analysis over variables by constructor terms)

• if we want siγi ↔∗ tiγi for all results: confluence of →R

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 28 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Goal

Rewriting Induction

Given:

• set E of equations s1 ≈ t1 [ϕ1], . . . , sn ≈ tn [ϕn]

• set of rewrite rules R

Want to prove:
for all constructor ground substitutions γ1, . . . , γn compatible with
ϕ1, . . . , ϕn: each siγi ↔∗R tiγi.

Requirements:

• termination of →R (to perform induction)

• sufficient completeness of →R: evaluation “cannot get stuck”
(for case analysis over variables by constructor terms)

• if we want siγi ↔∗ tiγi for all results: confluence of →R

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 28 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Goal

Rewriting Induction

Given:

• set E of equations s1 ≈ t1 [ϕ1], . . . , sn ≈ tn [ϕn]

• set of rewrite rules R

Want to prove:
for all constructor ground substitutions γ1, . . . , γn compatible with
ϕ1, . . . , ϕn: each siγi ↔∗R tiγi.

Requirements:

• termination of →R (to perform induction)

• sufficient completeness of →R: evaluation “cannot get stuck”
(for case analysis over variables by constructor terms)

• if we want siγi ↔∗ tiγi for all results: confluence of →R

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 28 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Approach

Rewriting Induction

Three sets:

• E (equations, “the queries”)

• R (rules, “the program”)

• H (rules, “induction hypotheses”)

Initially: E given, R given, H empty

Proof steps: pairs (E ,H) ` (E ′,H′) by several inference rules for `
Invariant: →R∪H terminating

Goal: find derivation (E , ∅) `∗ (∅,H)

Then also ↔∗E ⊆ ↔∗R∪H ⊆ ↔∗R on ground terms:

Equations E are inductive theorems for R

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 29 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Approach

Rewriting Induction

Three sets:

• E (equations, “the queries”)

• R (rules, “the program”)

• H (rules, “induction hypotheses”)

Initially: E given, R given, H empty

Proof steps: pairs (E ,H) ` (E ′,H′) by several inference rules for `
Invariant: →R∪H terminating

Goal: find derivation (E , ∅) `∗ (∅,H)

Then also ↔∗E ⊆ ↔∗R∪H ⊆ ↔∗R on ground terms:

Equations E are inductive theorems for R

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 29 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Approach

Rewriting Induction

Three sets:

• E (equations, “the queries”)

• R (rules, “the program”)

• H (rules, “induction hypotheses”)

Initially: E given, R given, H empty

Proof steps: pairs (E ,H) ` (E ′,H′) by several inference rules for `

Invariant: →R∪H terminating

Goal: find derivation (E , ∅) `∗ (∅,H)

Then also ↔∗E ⊆ ↔∗R∪H ⊆ ↔∗R on ground terms:

Equations E are inductive theorems for R

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 29 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Approach

Rewriting Induction

Three sets:

• E (equations, “the queries”)

• R (rules, “the program”)

• H (rules, “induction hypotheses”)

Initially: E given, R given, H empty

Proof steps: pairs (E ,H) ` (E ′,H′) by several inference rules for `
Invariant: →R∪H terminating

Goal: find derivation (E , ∅) `∗ (∅,H)

Then also ↔∗E ⊆ ↔∗R∪H ⊆ ↔∗R on ground terms:

Equations E are inductive theorems for R

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 29 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Approach

Rewriting Induction

Three sets:

• E (equations, “the queries”)

• R (rules, “the program”)

• H (rules, “induction hypotheses”)

Initially: E given, R given, H empty

Proof steps: pairs (E ,H) ` (E ′,H′) by several inference rules for `
Invariant: →R∪H terminating

Goal: find derivation (E , ∅) `∗ (∅,H)

Then also ↔∗E ⊆ ↔∗R∪H ⊆ ↔∗R on ground terms:

Equations E are inductive theorems for R

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 29 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

Simplification: definition

(E] {s ' t [ϕ]},H)
(E ∪ {s′ ≈ t [ψ]},H)

if s ≈ t [ϕ] →R∪H s′ ≈ t [ψ]

Idea: Use the program or an induction hypothesis to simplify the
query.

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 30 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

Simplification: example

R =


sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]
sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]


(E] {u(x, y, z) ≈ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1]

},H)

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 31 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

Simplification: example

R =


sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]
sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]


(E] {u(x, y, z) ≈ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1]

},H)

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 31 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

Simplification: example

R =


sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]
sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]



(E] {u(x, y + 1, z + y) ≈ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1]
},H)

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 31 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

Simplification: example

R =


sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]
sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]



(E] {u(x, y + 1, z + y) ≈ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1]
},H)

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 31 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

Simplification: example

R =


sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]
sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]



(E] {u(x, y′, z + y) ≈ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1
∧ y′ = y + 1]},H)

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 31 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

Simplification: example

R =


sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]
sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]



(E] {u(x, y′, z + y) ≈ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1
∧ y′ = y + 1]},H)

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 31 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

Simplification: example

R =


sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]
sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]


(E] {u(x, y′, z′) ≈ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1

∧ y′ = y + 1 ∧ z′ = z + y]},H)

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 31 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

Expansion: definition

(E] {s ' t [ϕ]},H)
(E ∪ Expd(s ≈ t [ϕ], p),H ∪ {s→ t [ϕ]})

if for every γ compatible with ϕ, s|p reduces and
R∪H ∪ {s→ t [ϕ]} is terminating

Expd(C[l′]p ≈ t [ϕ], p) contains equations C[rγ]p ≈ tγ [ϕγ ∧ ψγ]
for all l→ r [ψ] in R where l and l′ unify with most general unifier γ

Idea: Exhaustive case analysis, generate induction hypothesis.
(Closely related: narrowing.)

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 32 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

Expansion: definition

(E] {s ' t [ϕ]},H)
(E ∪ Expd(s ≈ t [ϕ], p),H ∪ {s→ t [ϕ]})

if for every γ compatible with ϕ, s|p reduces and
R∪H ∪ {s→ t [ϕ]} is terminating

Expd(C[l′]p ≈ t [ϕ], p) contains equations C[rγ]p ≈ tγ [ϕγ ∧ ψγ]
for all l→ r [ψ] in R where l and l′ unify with most general unifier γ

Idea: Exhaustive case analysis, generate induction hypothesis.
(Closely related: narrowing.)

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 32 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

Expansion: definition

(E] {s ' t [ϕ]},H)
(E ∪ Expd(s ≈ t [ϕ], p),H ∪ {s→ t [ϕ]})

if for every γ compatible with ϕ, s|p reduces and
R∪H ∪ {s→ t [ϕ]} is terminating

Expd(C[l′]p ≈ t [ϕ], p) contains equations C[rγ]p ≈ tγ [ϕγ ∧ ψγ]
for all l→ r [ψ] in R where l and l′ unify with most general unifier γ

Idea: Exhaustive case analysis, generate induction hypothesis.
(Closely related: narrowing.)

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 32 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

Expansion: example

R =


sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]
sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]


(E] {u(x, y′, z′) ≈ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1

∧ y′ = y + 1 ∧ z′ = z + y]},H)

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 33 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

Expansion: example

R =


sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]
sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]


(E] {u(x, y′, z′) ≈ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1

∧ y′ = y + 1 ∧ z′ = z + y]},H)

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 33 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

Expansion: example

R =


sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]
sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]



(E ∪ {u(x, y′ + 1, z′ + y′) ≈ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1
∧ y′ = y + 1 ∧ z′ = z + y ∧ y′ ≤ x]}

∪ {z′ ≈ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1
∧ y′ = y + 1 ∧ z′ = z + y ∧ ¬(y′ ≤ x)]}

,H ∪ {u(x, y′, z′)→ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1
∧ y′ = y + 1 ∧ z′ = z + y]})

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 33 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

Expansion: example

R =


sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]
sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]



(E ∪ {u(x, y′ + 1, z′ + y′) ≈ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1
∧ y′ = y + 1 ∧ z′ = z + y ∧ y′ ≤ x]}

∪ {z′ ≈ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1
∧ y′ = y + 1 ∧ z′ = z + y ∧ ¬(y′ ≤ x)]}

,H ∪ {u(x, y′, z′)→ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1
∧ y′ = y + 1 ∧ z′ = z + y]})

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 33 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

Expansion: example

R =


sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]
sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]



(E ∪ {u(x, y′ + 1, z′ + y′) ≈ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1
∧ y′ = y + 1 ∧ z′ = z + y ∧ y′ ≤ x]}

∪ {z′ ≈ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1
∧ y′ = y + 1 ∧ z′ = z + y ∧ ¬(y′ ≤ x)]}

,H ∪ {u(x, y′, z′)→ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1
∧ y′ = y + 1 ∧ z′ = z + y]})

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 33 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

Expansion: example

R =


sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]
sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]



(E ∪ {u(x, y′ + 1, z′ + y′) ≈ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1
∧ y′ = y + 1 ∧ z′ = z + y ∧ y′ ≤ x]}

∪ {z′ ≈ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1
∧ y′ = y + 1 ∧ z′ = z + y ∧ ¬(y′ ≤ x)]}

,H ∪ {u(x, y′, z′)→ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1
∧ y′ = y + 1 ∧ z′ = z + y]})

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 33 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

Expansion: example

R =


sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]
sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]



(E ∪ {u(x, y′ + 1, z′ + y′) ≈ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1
∧ y′ = y + 1 ∧ z′ = z + y ∧ y′ ≤ x]}

∪ {z′ ≈ x+ z [x ≥ y ∧ x = x′ + 1
∧ y′ = y + 1 ∧ z′ = z + y ∧ ¬(y′ ≤ x)]}

,H ∪ {u(x, y′, z′)→ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1
∧ y′ = y + 1 ∧ z′ = z + y]})

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 33 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

Expansion: example

R =


sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]
sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]



(E ∪ {u(x, y′ + 1, z′ + y′) ≈ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1
∧ y′ = y + 1 ∧ z′ = z + y ∧ y′ ≤ x]}

∪ {z′ ≈ x+ z [x ≥ y ∧ x = x′ + 1
∧ y′ = y + 1 ∧ z′ = z + y ∧ ¬(y′ ≤ x)]}

,H ∪ {u(x, y′, z′)→ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1
∧ y′ = y + 1 ∧ z′ = z + y]})

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 33 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

Expansion: example

R =


sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]
sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]



(E ∪ {u(x, y′′, z′′) ≈ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1 ∧ y′ = y + 1
∧ z′ = z + y ∧ y′ ≤ x ∧ y′′ = y′ + 1 ∧ z′′ = z′ + y′]}

∪ {z′ ≈ x+ z [x ≥ y ∧ x = x′ + 1
∧ y′ = y + 1 ∧ z′ = z + y ∧ ¬(y′ ≤ x)]}

,H ∪ {u(x, y′, z′)→ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1
∧ y′ = y + 1 ∧ z′ = z + y]})

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 33 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

Expansion: example

R =


sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]
sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]



(E ∪ {u(x, y′′, z′′) ≈ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1 ∧ y′ = y + 1
∧ z′ = z + y ∧ y′ ≤ x ∧ y′′ = y′ + 1 ∧ z′′ = z′ + y′]}

∪ {z′ ≈ x+ z [x ≥ y ∧ x = x′ + 1
∧ y′ = y + 1 ∧ z′ = z + y ∧ ¬(y′ ≤ x)]}

,H ∪ {u(x, y′, z′)→ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1
∧ y′ = y + 1 ∧ z′ = z + y]})

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 33 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

Expansion: example

R =


sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]
sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]



(E ∪ {u(x, y′′, z′′) ≈ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1 ∧ y′ = y + 1
∧ z′ = z + y ∧ y′ ≤ x ∧ y′′ = y′ + 1 ∧ z′′ = z′ + y′]}

∪ {z′ ≈ x+ z [x ≥ y ∧ x = x′ + 1
∧ y′ = y + 1 ∧ z′ = z + y ∧ ¬(y′ ≤ x)]}

,H ∪ {u(x, y′, z′)→ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1
∧ y′ = y + 1 ∧ z′ = z + y]})

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 33 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

Expansion: example

R =


sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]
sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]



(E ∪ {u(x, y′′, z′′) ≈ x+ u(x′, y′, z′) [x ≥ y ∧ x = x′ + 1 ∧ y′ = y + 1
∧ z′ = z + y ∧ y′ ≤ x ∧ y′′ = y′ + 1 ∧ z′′ = z′ + y′]}

∪ {z′ ≈ x+ z [x ≥ y ∧ x = x′ + 1
∧ y′ = y + 1 ∧ z′ = z + y ∧ ¬(y′ ≤ x)]}

,H ∪ {u(x, y′, z′)→ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1
∧ y′ = y + 1 ∧ z′ = z + y]})

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 33 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

Expansion: example

R =


sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]
sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]



(E ∪ {u(x, y′′, z′′) ≈ x+ u(x′, y′, z′) [x ≥ y ∧ x = x′ + 1 ∧ y′ = y + 1
∧ z′ = z + y ∧ y′ ≤ x ∧ y′′ = y′ + 1 ∧ z′′ = z′ + y′]}

∪ {z′ ≈ x+ z [x ≥ y ∧ x = x′ + 1
∧ y′ = y + 1 ∧ z′ = z + y ∧ ¬(y′ ≤ x)]}

,H ∪ {u(x, y′, z′)→ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1
∧ y′ = y + 1 ∧ z′ = z + y]})

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 33 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

Expansion: example

R =


sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]
sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]



(E ∪ {u(x, y′′, z′′) ≈ x+ u(x′, y′, z′) [x ≥ y ∧ x = x′ + 1 ∧ y′ = y + 1
∧ z′ = z + y ∧ y′ ≤ x ∧ y′′ = y′ + 1 ∧ z′′ = z′ + y′]}

∪ {z′ ≈ x+ z [x ≥ y ∧ x = x′ + 1
∧ y′ = y + 1 ∧ z′ = z + y ∧ ¬(y′ ≤ x)]}

,H ∪ {u(x, y′, z′)→ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1
∧ y′ = y + 1 ∧ z′ = z + y]})

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 33 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

Expansion: example

R =


sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]
sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]



(E ∪ {u(x, y′′, z′′) ≈ x+ u(x′, y′, z′) [x ≥ y ∧ x = x′ + 1 ∧ y′ = y + 1
∧ z′ = z + y ∧ y′ ≤ x ∧ y′′ = y′ + 1 ∧ z′′ = z′ + y′]}

∪ {z′ ≈ x+ z [x ≥ y ∧ x = x′ + 1
∧ y′ = y + 1 ∧ z′ = z + y ∧ ¬(y′ ≤ x)]}

,H ∪ {u(x, y′, z′)→ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1
∧ y′ = y + 1 ∧ z′ = z + y]}) [y := y′, y′ := y′′, z := z′, z′ := z′′]

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 33 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

Expansion: example

R =


sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]
sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]



(E ∪ {u(x, y′′, z′′) ≈ x+ u(x′, y′, z′) [x ≥ y ∧ x = x′ + 1 ∧ y′ = y + 1
∧ z′ = z + y ∧ y′ ≤ x ∧ y′′ = y′ + 1 ∧ z′′ = z′ + y′]}

∪ {z′ ≈ x+ z [x ≥ y ∧ x = x′ + 1
∧ y′ = y + 1 ∧ z′ = z + y ∧ ¬(y′ ≤ x)]}

,H ∪ {u(x, y′, z′)→ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1
∧ y′ = y + 1 ∧ z′ = z + y]}) [y := y′, y′ := y′′, z := z′, z′ := z′′]

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 33 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

Expansion: example

R =


sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]
sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]



(E ∪ {u(x, y′′, z′′) ≈ x+ u(x′, y′, z′) [x ≥ y ∧ x = x′ + 1 ∧ y′ = y + 1
∧ z′ = z + y ∧ y′ ≤ x ∧ y′′ = y′ + 1 ∧ z′′ = z′ + y′]}

∪ {z′ ≈ x+ z [x ≥ y ∧ x = x′ + 1
∧ y′ = y + 1 ∧ z′ = z + y ∧ ¬(y′ ≤ x)]}

,H ∪ {u(x, y′, z′)→ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1
∧ y′ = y + 1 ∧ z′ = z + y]}) [y := y′, y′ := y′′, z := z′, z′ := z′′]

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 33 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

Expansion: example

R =


sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]
sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]



(E ∪ {u(x, y′′, z′′) ≈ x+ u(x′, y′, z′) [x ≥ y ∧ x = x′ + 1 ∧ y′ = y + 1
∧ z′ = z + y ∧ y′ ≤ x ∧ y′′ = y′ + 1 ∧ z′′ = z′ + y′]}

∪ {z′ ≈ x+ z [x ≥ y ∧ x = x′ + 1
∧ y′ = y + 1 ∧ z′ = z + y ∧ ¬(y′ ≤ x)]}

,H ∪ {u(x, y′, z′)→ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1
∧ y′ = y + 1 ∧ z′ = z + y]}) [y := y′, y′ := y′′, z := z′, z′ := z′′]

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 33 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

Expansion: example

R =


sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]
sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]



(E ∪ {u(x, y′′, z′′) ≈ x+ u(x′, y′, z′) [x ≥ y ∧ x = x′ + 1 ∧ y′ = y + 1
∧ z′ = z + y ∧ y′ ≤ x ∧ y′′ = y′ + 1 ∧ z′′ = z′ + y′]}

∪ {z′ ≈ x+ z [x ≥ y ∧ x = x′ + 1
∧ y′ = y + 1 ∧ z′ = z + y ∧ ¬(y′ ≤ x)]}

,H ∪ {u(x, y′, z′)→ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1
∧ y′ = y + 1 ∧ z′ = z + y]}) [y := y′, y′ := y′′, z := z′, z′ := z′′]

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 33 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

Expansion: example

R =


sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]
sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]



(E ∪ {x+ u(x′, y′, z′) ≈ x+ u(x′, y′, z′) [x ≥ y ∧ x = x′ + 1 ∧ y′ =
y + 1 ∧ z′ = z + y ∧ y′ ≤ x ∧ y′′ = y′ + 1 ∧ z′′ = z′ + y′]}

∪ {z′ ≈ x+ z [x ≥ y ∧ x = x′ + 1
∧ y′ = y + 1 ∧ z′ = z + y ∧ ¬(y′ ≤ x)]}

,H ∪ {u(x, y′, z′)→ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1
∧ y′ = y + 1 ∧ z′ = z + y]})

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 33 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

Deletion: definition

(E] {s ' t [ϕ]},H)
(E ,H)

if s ≡ t or ϕ is unsatisfiable

Idea: Delete trivial inductive theorems.

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 34 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

Deletion: example

R =


sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]
sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]



(E ∪ {x+ u(x′, y′, z′) ≈ x+ u(x′, y′, z′) [x ≥ y ∧ x = x′ + 1 ∧ y′ =
y + 1 ∧ z′ = z + y ∧ y′ ≤ x ∧ y′′ = y′ + 1 ∧ z′′ = z′ + y′]}

∪ {z′ ≈ x+ z [x ≥ y ∧ x = x′ + 1 ∧ y′ = y + 1 ∧ z′ = z + y
∧ ¬(y′ ≤ x)]}

,H ∪ {u(x, y′, z′)→ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1 ∧ y′ = y + 1
∧ z′ = z + y]})

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 35 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

Deletion: example

R =


sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]
sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]



(E ∪ {x+ u(x′, y′, z′) ≈ x+ u(x′, y′, z′) [x ≥ y ∧ x = x′ + 1 ∧ y′ =
y + 1 ∧ z′ = z + y ∧ y′ ≤ x ∧ y′′ = y′ + 1 ∧ z′′ = z′ + y′]}

∪ {z′ ≈ x+ z [x ≥ y ∧ x = x′ + 1 ∧ y′ = y + 1 ∧ z′ = z + y
∧ ¬(y′ ≤ x)]}

,H ∪ {u(x, y′, z′)→ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1 ∧ y′ = y + 1
∧ z′ = z + y]})

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 35 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

Deletion: example

R =


sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]
sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]



(E ∪

{x+ u(x′, y′, z′) ≈ x+ u(x′, y′, z′) [x ≥ y ∧ x = x′ + 1 ∧ y′ =
y + 1 ∧ z′ = z + y ∧ y′ ≤ x ∧ y′′ = y′ + 1 ∧ z′′ = z′ + y′]}

∪

{z′ ≈ x+ z [x ≥ y ∧ x = x′ + 1 ∧ y′ = y + 1 ∧ z′ = z + y
∧ ¬(y′ ≤ x)]}

,H ∪ {u(x, y′, z′)→ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1 ∧ y′ = y + 1
∧ z′ = z + y]})

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 35 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

EQ-Deletion: definition

(E] {C[s1, . . . , sn] ≈ C[t1, . . . , tn] [ϕ]},H)
(E ∪ {C[~s] ≈ C[~t] [ϕ ∧ ¬

∧n
i=1(si = ti)]},H)

if s1, . . . , sn, t1, . . . , tn all logical terms

Idea: If all arguments to the same context become equal, we’re done.

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 36 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

EQ-Deletion: example

R =


sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]
sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]



(E ∪ {z′ ≈ x+ z [x ≥ y ∧ x = x′ + 1 ∧ y′ = y + 1 ∧ z′ = z + y
∧ ¬(y′ ≤ x)]}

,H ∪ {u(x, y′, z′)→ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1 ∧ y′ = y + 1
∧ z′ = z + y]})

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 37 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

EQ-Deletion: example

R =


sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]
sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]



(E ∪ {z′ ≈ x+ z [x ≥ y ∧ x = x′ + 1 ∧ y′ = y + 1 ∧ z′ = z + y
∧ ¬(y′ ≤ x) ∧ ¬(z′ = x+ z)]}

,H ∪ {u(x, y′, z′)→ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1 ∧ y′ = y + 1
∧ z′ = z + y]})

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 37 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

EQ-Deletion: example

R =


sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]
sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]



(E ∪ {z′ ≈ x+ z [x ≥ y ∧ x = x′ + 1 ∧ y′ = y + 1 ∧ z′ = z + y
∧ ¬(y′ ≤ x) ∧ ¬(z′ = x+ z)]}

,H ∪ {u(x, y′, z′)→ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1 ∧ y′ = y + 1
∧ z′ = z + y]})

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 37 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

EQ-Deletion: example

R =


sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]
sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]



(E

∪ {z′ ≈ x+ z [x ≥ y ∧ x = x′ + 1 ∧ y′ = y + 1 ∧ z′ = z + y
∧ ¬(y′ ≤ x) ∧ ¬(z′ = x+ z)]}

,H ∪ {u(x, y′, z′)→ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1 ∧ y′ = y + 1
∧ z′ = z + y]})

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 37 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

Postulate: definition

(E ,H)
(E] {s ≈ t [ϕ]},H)

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 38 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

Postulate: example

R:
sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]
sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]

Goal:

({sum1(x) ≈ sum2(x) [>]}, ∅)

u(x, y, z) ≈ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 39 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

Postulate: example

R:
sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]
sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]

Goal:

({sum1(x) ≈ sum2(x) [>],
u(x, y, z) ≈ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1
∧y′ = y + 1 ∧ z′ = z + y]}, ∅)

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 39 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Rewriting Induction Rules

Postulate: example

R:
sum1(x) → 0 [x ≤ 0]
sum1(x) → x+ sum1(x− 1) [x > 0]
sum2(x) → u(x, 0, 0)
u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
u(x, i, z) → z [¬(i ≤ x)]

Goal:

({sum1(x) ≈ sum2(x) [>]},
{u(x, y′, z′)→ x+ u(x′, y, z) [x ≥ y ∧ x = x′ + 1
∧y′ = y + 1 ∧ z′ = z + y]})

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 39 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Overview

1 Motivation

2 Constrained Term Rewriting

3 Transforming C Programs

4 Rewriting Induction

5 Lemma Generation

6 Conclusions

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 40 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Divergence

What Typically Happens

1. sum1(x) → 0 [x ≤ 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, 0, 0)
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]

H1 sum1(x) → u(x, 0, 0) [>]
H2 u(x, 1, 0) → x+ u(x′, 0, 0) [x > 0 ∧ x′ = x− 1]

Goals:
sum1(x) ≈ sum2(x) [>]

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 41 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Divergence

What Typically Happens

1. sum1(x) → 0 [x ≤ 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, 0, 0)
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]

H1 sum1(x) → u(x, 0, 0) [>]
H2 u(x, 1, 0) → x+ u(x′, 0, 0) [x > 0 ∧ x′ = x− 1]

Goals:
sum1(x) ≈ u(x, 0, 0) [>]

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 41 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Divergence

What Typically Happens

1. sum1(x) → 0 [x ≤ 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, 0, 0)
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]
H1 sum1(x) → u(x, 0, 0) [>]

H2 u(x, 1, 0) → x+ u(x′, 0, 0) [x > 0 ∧ x′ = x− 1]

Goals:
x+ sum1(x− 1) ≈ u(x, 0, 0) [x > 0]
0 ≈ u(x, 0, 0) [x ≤ 0]

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 41 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Divergence

What Typically Happens

1. sum1(x) → 0 [x ≤ 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, 0, 0)
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]
H1 sum1(x) → u(x, 0, 0) [>]

H2 u(x, 1, 0) → x+ u(x′, 0, 0) [x > 0 ∧ x′ = x− 1]

Goals:
x+ sum1(x− 1) ≈ u(x, 0, 0) [x > 0]

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 41 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Divergence

What Typically Happens

1. sum1(x) → 0 [x ≤ 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, 0, 0)
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]
H1 sum1(x) → u(x, 0, 0) [>]

H2 u(x, 1, 0) → x+ u(x′, 0, 0) [x > 0 ∧ x′ = x− 1]

Goals:
x+ sum1(x− 1) ≈ u(x, 0 + 1, 0 + 0) [x > 0]

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 41 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Divergence

What Typically Happens

1. sum1(x) → 0 [x ≤ 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, 0, 0)
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]
H1 sum1(x) → u(x, 0, 0) [>]

H2 u(x, 1, 0) → x+ u(x′, 0, 0) [x > 0 ∧ x′ = x− 1]

Goals:
x+ sum1(x

′) ≈ u(x, 1, 0) [x > 0 ∧ x′ = x− 1]

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 41 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Divergence

What Typically Happens

1. sum1(x) → 0 [x ≤ 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, 0, 0)
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]
H1 sum1(x) → u(x, 0, 0) [>]

H2 u(x, 1, 0) → x+ u(x′, 0, 0) [x > 0 ∧ x′ = x− 1]

Goals:
x+ u(x′, 0, 0) ≈ u(x, 1, 0) [x > 0 ∧ x′ = x− 1]

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 41 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Divergence

What Typically Happens

1. sum1(x) → 0 [x ≤ 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, 0, 0)
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]
H1 sum1(x) → u(x, 0, 0) [>]
H2 u(x, 1, 0) → x+ u(x′, 0, 0) [x > 0 ∧ x′ = x− 1]

Goals:
x+ u(x′, 0, 0) ≈ u(x, 1 + 1, 0 + 1) [x > 0 ∧ x′ = x− 1 ∧ x′ > 0]
x+ u(x′, 0, 0) ≈ 0 [x > 0 ∧ x′ = x− 1 ∧ x′ ≤ 0]

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 41 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Divergence

What Typically Happens

1. sum1(x) → 0 [x ≤ 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, 0, 0)
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]
H1 sum1(x) → u(x, 0, 0) [>]
H2 u(x, 1, 0) → x+ u(x′, 0, 0) [x > 0 ∧ x′ = x− 1]

Goals:
x+ u(x′, 0, 0) ≈ u(x, 1 + 1, 0 + 1) [x > 0 ∧ x′ = x− 1 ∧ x′ > 0]

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 41 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Divergence

What Typically Happens

1. sum1(x) → 0 [x ≤ 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, 0, 0)
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]
H1 sum1(x) → u(x, 0, 0) [>]
H2 u(x, 1, 0) → x+ u(x′, 0, 0) [x > 0 ∧ x′ = x− 1]

Goals:
x+u(x′, 0+1, 0+0) ≈ u(x, 1+1, 0+1) [x > 0∧x′ = x−1∧x′ > 0]

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 41 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Divergence

What Typically Happens

1. sum1(x) → 0 [x ≤ 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, 0, 0)
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]
H1 sum1(x) → u(x, 0, 0) [>]
H2 u(x, 1, 0) → x+ u(x′, 0, 0) [x > 0 ∧ x′ = x− 1]

Goals:
x+ u(x′, 1, 0) ≈ u(x, 2, 1) [x > 0 ∧ x′ = x− 1 ∧ x′ > 0]

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 41 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Divergence

What Typically Happens

1. sum1(x) → 0 [x ≤ 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, 0, 0)
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]
H1 sum1(x) → u(x, 0, 0) [>]
H2 u(x, 1, 0) → x+ u(x′, 0, 0) [x > 0 ∧ x′ = x− 1]
H3 u(x, 2, 1) → x+ u(x′, 1, 0) [x ≥ 1 ∧ x′ = x− 1]

H4 u(x, 3, 3) → x+ u(x′, 2, 1) [x ≥ 2 ∧ x′ = x− 1]
H5 u(x, 4, 6) → x+ u(x′, 3, 3) [x ≥ 3 ∧ x′ = x− 1]

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 42 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Divergence

What Typically Happens

1. sum1(x) → 0 [x ≤ 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, 0, 0)
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]
H1 sum1(x) → u(x, 0, 0) [>]
H2 u(x, 1, 0) → x+ u(x′, 0, 0) [x > 0 ∧ x′ = x− 1]
H3 u(x, 2, 1) → x+ u(x′, 1, 0) [x ≥ 1 ∧ x′ = x− 1]
H4 u(x, 3, 3) → x+ u(x′, 2, 1) [x ≥ 2 ∧ x′ = x− 1]

H5 u(x, 4, 6) → x+ u(x′, 3, 3) [x ≥ 3 ∧ x′ = x− 1]

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 42 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Divergence

What Typically Happens

1. sum1(x) → 0 [x ≤ 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, 0, 0)
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]
H1 sum1(x) → u(x, 0, 0) [>]
H2 u(x, 1, 0) → x+ u(x′, 0, 0) [x > 0 ∧ x′ = x− 1]
H3 u(x, 2, 1) → x+ u(x′, 1, 0) [x ≥ 1 ∧ x′ = x− 1]
H4 u(x, 3, 3) → x+ u(x′, 2, 1) [x ≥ 2 ∧ x′ = x− 1]
H5 u(x, 4, 6) → x+ u(x′, 3, 3) [x ≥ 3 ∧ x′ = x− 1]

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 42 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Generalisation Method

Use Different Notation!

1. sum1(x) → 0 [x ≤ 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, 0, 0)
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]

H1 sum1(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]

Goals:

Generalisation: Drop initialisations

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 43 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Generalisation Method

Use Different Notation!

1. sum1(x) → c0 [x ≤ 0 ∧ c0 = 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]

H1 sum1(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]

Goals:

Generalisation: Drop initialisations

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 43 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Generalisation Method

Use Different Notation!

1. sum1(x) → c0 [x ≤ 0 ∧ c0 = 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]

H1 sum1(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]

Goals:
sum1(x) ≈ sum2(x) [>]

Generalisation: Drop initialisations

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 43 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Generalisation Method

Use Different Notation!

1. sum1(x) → c0 [x ≤ 0 ∧ c0 = 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]

H1 sum1(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]

Goals:
sum1(x) ≈ u(x, c1, c2) [c1 = 0 ∧ c2 = 0]

Generalisation: Drop initialisations

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 43 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Generalisation Method

Use Different Notation!

1. sum1(x) → c0 [x ≤ 0 ∧ c0 = 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]
H1 sum1(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]

Goals:
x+ sum1(x− 1) ≈ u(x, c1, c2) [c1 = 0 ∧ c2 = 0 ∧ x > 0]
c0 ≈ u(x, c1, c2) [c1 = 0 ∧ c2 = 0 ∧ x ≤ 0 ∧ c0 = 0]

Generalisation: Drop initialisations

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 43 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Generalisation Method

Use Different Notation!

1. sum1(x) → c0 [x ≤ 0 ∧ c0 = 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]
H1 sum1(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]

Goals:
x+ sum1(x− 1) ≈ u(x, c1, c2) [c1 = 0 ∧ c2 = 0 ∧ x > 0]

Generalisation: Drop initialisations

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 43 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Generalisation Method

Use Different Notation!

1. sum1(x) → c0 [x ≤ 0 ∧ c0 = 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]
H1 sum1(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]

Goals:
x+ sum1(x− 1) ≈ u(x, c1 + 1, c2 + c1) [c1 = 0 ∧ c2 = 0 ∧ x > 0]

Generalisation: Drop initialisations

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 43 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Generalisation Method

Use Different Notation!

1. sum1(x) → c0 [x ≤ 0 ∧ c0 = 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]
H1 sum1(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]

Goals:
x+ sum1(x

′) ≈ u(x, i, z) [c1 = 0 ∧ c2 = 0 ∧ x > 0 ∧ x′ =
x− 1 ∧ i = c1 + 1 ∧ z = c1 + c2]

Generalisation: Drop initialisations

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 43 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Generalisation Method

Use Different Notation!

1. sum1(x) → c0 [x ≤ 0 ∧ c0 = 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]
H1 sum1(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]

Goals:
x+ u(x′, c1, c2) ≈ u(x, i, z) [c1 = 0 ∧ c2 = 0 ∧ x > 0 ∧ x′ =
x− 1 ∧ i = c1 + 1 ∧ z = c1 + c2]

Generalisation: Drop initialisations

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 43 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Generalisation Method

Use Different Notation!

1. sum1(x) → c0 [x ≤ 0 ∧ c0 = 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]
H1 sum1(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]

Goals:
x+ u(x′, c1, c2) ≈ u(x, i, z) [c1 = 0 ∧ c2 = 0 ∧ x > 0 ∧ x′ =
x− 1 ∧ i = c1 + 1 ∧ z = c1 + c2]

Generalisation: Drop initialisations

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 43 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Generalisation Method

Use Different Notation!

1. sum1(x) → c0 [x ≤ 0 ∧ c0 = 0]
2. sum1(x) → x+ sum1(x− 1) [x > 0]
3. sum2(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]
4. u(x, i, z) → u(x, i+ 1, z + i) [i ≤ x]
5. u(x, i, z) → z [¬(i ≤ x)]
H1 sum1(x) → u(x, c1, c2) [c1 = 0 ∧ c2 = 0]

Goals:
x+ u(x′, c1, c2) ≈ u(x, i, z) [

c1 = 0 ∧ c2 = 0 ∧

x > 0 ∧ x′ =
x− 1 ∧ i = c1 + 1 ∧ z = c1 + c2]

Generalisation: Drop initialisations

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 43 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Overview

1 Motivation

2 Constrained Term Rewriting

3 Transforming C Programs

4 Rewriting Induction

5 Lemma Generation

6 Conclusions

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 44 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

What was already there?

Shoulders of Giants

• various kinds of constrained rewriting
(But: most were fundamentally limited to the integers)

• long history of unconstrained rewriting induction, e.g.
[Reddy 1990]
(But: lemma generation methods do not obviously extend)

• rewriting induction for a form of constrained rewriting
(But: only very complex and relatively weak lemma
generation)

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 45 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

What was already there?

Shoulders of Giants

• various kinds of constrained rewriting

(But: most were fundamentally limited to the integers)

• long history of unconstrained rewriting induction, e.g.
[Reddy 1990]
(But: lemma generation methods do not obviously extend)

• rewriting induction for a form of constrained rewriting
(But: only very complex and relatively weak lemma
generation)

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 45 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

What was already there?

Shoulders of Giants

• various kinds of constrained rewriting
(But: most were fundamentally limited to the integers)

• long history of unconstrained rewriting induction, e.g.
[Reddy 1990]
(But: lemma generation methods do not obviously extend)

• rewriting induction for a form of constrained rewriting
(But: only very complex and relatively weak lemma
generation)

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 45 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

What was already there?

Shoulders of Giants

• various kinds of constrained rewriting
(But: most were fundamentally limited to the integers)

• long history of unconstrained rewriting induction, e.g.
[Reddy 1990]

(But: lemma generation methods do not obviously extend)

• rewriting induction for a form of constrained rewriting
(But: only very complex and relatively weak lemma
generation)

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 45 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

What was already there?

Shoulders of Giants

• various kinds of constrained rewriting
(But: most were fundamentally limited to the integers)

• long history of unconstrained rewriting induction, e.g.
[Reddy 1990]
(But: lemma generation methods do not obviously extend)

• rewriting induction for a form of constrained rewriting
(But: only very complex and relatively weak lemma
generation)

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 45 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

What was already there?

Shoulders of Giants

• various kinds of constrained rewriting
(But: most were fundamentally limited to the integers)

• long history of unconstrained rewriting induction, e.g.
[Reddy 1990]
(But: lemma generation methods do not obviously extend)

• rewriting induction for a form of constrained rewriting

(But: only very complex and relatively weak lemma
generation)

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 45 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

What was already there?

Shoulders of Giants

• various kinds of constrained rewriting
(But: most were fundamentally limited to the integers)

• long history of unconstrained rewriting induction, e.g.
[Reddy 1990]
(But: lemma generation methods do not obviously extend)

• rewriting induction for a form of constrained rewriting
(But: only very complex and relatively weak lemma
generation)

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 45 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Contributions

Implementation and Experiments

• C2LCTRS: automatic tool to translate C programs to LCTRSs
http://www.trs.cm.is.nagoya-u.ac.jp/c2lctrs/
• Ctrl: automatic tool to prove equivalence of LCTRS functions
http://cl-informatik.uibk.ac.at/software/ctrl/

function YES NO MAYBE time
sum 9 0 4 2.4
fib 4 6 3 6.6

sumfrom 3 1 2 1.9
strlen 1 0 5 7.2
strcpy 3 0 3 11.5
arrsum 1 0 0 4.2
fact 1 0 0 2.4

literature 4 3 18 4.0
safety 3 2 7 22.3

total 29 12 44

Experiments with student code

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 46 / 48

http://www.trs.cm.is.nagoya-u.ac.jp/c2lctrs/
http://cl-informatik.uibk.ac.at/software/ctrl/

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Contributions

Implementation and Experiments
• C2LCTRS: automatic tool to translate C programs to LCTRSs
http://www.trs.cm.is.nagoya-u.ac.jp/c2lctrs/

• Ctrl: automatic tool to prove equivalence of LCTRS functions
http://cl-informatik.uibk.ac.at/software/ctrl/

function YES NO MAYBE time
sum 9 0 4 2.4
fib 4 6 3 6.6

sumfrom 3 1 2 1.9
strlen 1 0 5 7.2
strcpy 3 0 3 11.5
arrsum 1 0 0 4.2
fact 1 0 0 2.4

literature 4 3 18 4.0
safety 3 2 7 22.3

total 29 12 44

Experiments with student code

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 46 / 48

http://www.trs.cm.is.nagoya-u.ac.jp/c2lctrs/
http://cl-informatik.uibk.ac.at/software/ctrl/

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Contributions

Implementation and Experiments
• C2LCTRS: automatic tool to translate C programs to LCTRSs
http://www.trs.cm.is.nagoya-u.ac.jp/c2lctrs/
• Ctrl: automatic tool to prove equivalence of LCTRS functions
http://cl-informatik.uibk.ac.at/software/ctrl/

function YES NO MAYBE time
sum 9 0 4 2.4
fib 4 6 3 6.6

sumfrom 3 1 2 1.9
strlen 1 0 5 7.2
strcpy 3 0 3 11.5
arrsum 1 0 0 4.2
fact 1 0 0 2.4

literature 4 3 18 4.0
safety 3 2 7 22.3

total 29 12 44

Experiments with student code

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 46 / 48

http://www.trs.cm.is.nagoya-u.ac.jp/c2lctrs/
http://cl-informatik.uibk.ac.at/software/ctrl/

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Contributions

Implementation and Experiments
• C2LCTRS: automatic tool to translate C programs to LCTRSs
http://www.trs.cm.is.nagoya-u.ac.jp/c2lctrs/
• Ctrl: automatic tool to prove equivalence of LCTRS functions
http://cl-informatik.uibk.ac.at/software/ctrl/

function YES NO MAYBE time
sum 9 0 4 2.4
fib 4 6 3 6.6

sumfrom 3 1 2 1.9
strlen 1 0 5 7.2
strcpy 3 0 3 11.5
arrsum 1 0 0 4.2
fact 1 0 0 2.4

literature 4 3 18 4.0
safety 3 2 7 22.3

total 29 12 44

Experiments with student code

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 46 / 48

http://www.trs.cm.is.nagoya-u.ac.jp/c2lctrs/
http://cl-informatik.uibk.ac.at/software/ctrl/

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Contributions

Implementation and Experiments
• C2LCTRS: automatic tool to translate C programs to LCTRSs
http://www.trs.cm.is.nagoya-u.ac.jp/c2lctrs/
• Ctrl: automatic tool to prove equivalence of LCTRS functions
http://cl-informatik.uibk.ac.at/software/ctrl/

function YES NO MAYBE time
sum 9 0 4 2.2
fib 10 1 2 5.9

sumfrom 3 0 3 2.3
strlen 2 0 4 6.0
strcpy 5 0 1 14.1
arrsum 1 0 0 4.2
fact 1 0 0 2.5

literature 5 2 18 3.9
safety 3 2 7 22.3

total 39 5 41

Experiments with student code and adapted specs
(ignoring boundary cases like negative input)

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 47 / 48

http://www.trs.cm.is.nagoya-u.ac.jp/c2lctrs/
http://cl-informatik.uibk.ac.at/software/ctrl/

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Contributions

Conclusion
• Logically Constrained Term Rewrite Systems

for automated reasoning and program analysis

• Equivalence-preserving frontend to translate
from C fragment on integers, arrays, ... to LCTRSs

• Constrained rewriting induction to prove equivalence of
functions defined by LCTRSs

• Lemma generation technique suited to problems from
imperative programs (second technique in the paper)

• Paper:

Carsten Fuhs, Cynthia Kop, Naoki Nishida
Verifying Procedural Programs via Constrained Rewriting
Induction
ACM Transactions on Computational Logic 18(2): 14:1-14:50
(2017)

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 48 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Contributions

Conclusion
• Logically Constrained Term Rewrite Systems

for automated reasoning and program analysis

• Equivalence-preserving frontend to translate
from C fragment on integers, arrays, ... to LCTRSs

• Constrained rewriting induction to prove equivalence of
functions defined by LCTRSs

• Lemma generation technique suited to problems from
imperative programs (second technique in the paper)

• Paper:

Carsten Fuhs, Cynthia Kop, Naoki Nishida
Verifying Procedural Programs via Constrained Rewriting
Induction
ACM Transactions on Computational Logic 18(2): 14:1-14:50
(2017)

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 48 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Contributions

Conclusion
• Logically Constrained Term Rewrite Systems

for automated reasoning and program analysis

• Equivalence-preserving frontend to translate
from C fragment on integers, arrays, ... to LCTRSs

• Constrained rewriting induction to prove equivalence of
functions defined by LCTRSs

• Lemma generation technique suited to problems from
imperative programs (second technique in the paper)

• Paper:

Carsten Fuhs, Cynthia Kop, Naoki Nishida
Verifying Procedural Programs via Constrained Rewriting
Induction
ACM Transactions on Computational Logic 18(2): 14:1-14:50
(2017)

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 48 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Contributions

Conclusion
• Logically Constrained Term Rewrite Systems

for automated reasoning and program analysis

• Equivalence-preserving frontend to translate
from C fragment on integers, arrays, ... to LCTRSs

• Constrained rewriting induction to prove equivalence of
functions defined by LCTRSs

• Lemma generation technique suited to problems from
imperative programs (second technique in the paper)

• Paper:

Carsten Fuhs, Cynthia Kop, Naoki Nishida
Verifying Procedural Programs via Constrained Rewriting
Induction
ACM Transactions on Computational Logic 18(2): 14:1-14:50
(2017)

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 48 / 48

Motivation Constrained Term Rewriting Transforming C Programs Rewriting Induction Lemma Generation Conclusions

Contributions

Conclusion
• Logically Constrained Term Rewrite Systems

for automated reasoning and program analysis

• Equivalence-preserving frontend to translate
from C fragment on integers, arrays, ... to LCTRSs

• Constrained rewriting induction to prove equivalence of
functions defined by LCTRSs

• Lemma generation technique suited to problems from
imperative programs (second technique in the paper)

• Paper:

Carsten Fuhs, Cynthia Kop, Naoki Nishida
Verifying Procedural Programs via Constrained Rewriting
Induction
ACM Transactions on Computational Logic 18(2): 14:1-14:50
(2017)

Proving Equivalence of Imperative Programs via Constrained Rewriting Induction Carsten Fuhs 48 / 48

	Motivation
	Marking Student Programs
	Example Assignment
	Example Homework Solutions
	Solving the Problem

	Constrained Term Rewriting
	Examples
	Summary

	Transforming C Programs
	Simple Integer Functions
	Error Checking
	Further Extensions

	Rewriting Induction
	Goal
	Approach
	Rewriting Induction Rules

	Lemma Generation
	Divergence
	Generalisation Method

	Conclusions
	What was already there?
	Contributions

